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Abstract—We study low-overhead uplink multi-access algo-
rithms for massive Internet-of-Things (IoT) that can exploit the
MIMO performance gain. Although MIMO improves system
capacity, it usually requires high overhead due to Channel
State Information (CSI) feedback, which is unsuitable for IoT.
Recently, a Pseudo-Random Beam-Forming (PRBF) scheme was
proposed to exploit the MIMO performance gain for uplink IoT
access with uniform channel and load, without collecting CSI at
the BS. For non-uniform channel and load, new adaptive beam-
selection and random-access algorithms are needed to efficiently
utilize the system capacity with low overhead. Most existing
algorithms for a related multi-channel scheduling problem re-
quire each node to at least know some information of the
queue length of all contending nodes. In contrast, we propose
a new Low-overhead Multi-Channel Joint Channel-Assignment
and Random-Access (L-MC-JCARA) algorithm that reduces the
overhead to be independent of the number of interfering nodes.
A key novelty is to let the BS estimate the total backlog in each
contention group by only observing the random-access events, so
that no queue-length feedback is needed from IoT devices. We
prove that L-MC-JCARA can achieve at least 0.24 of the capacity
region of the optimal centralized scheduler for the corresponding
multi-channel system.

Index Terms—machine-type communication, low overhead,
provable stability, Lyapunov analysis.

I. INTRODUCTION

Internet of Things (IoT) has been envisioned as a key
application scenario in the upcoming 5G wireless network,
which aims to interconnect a massive number of devices to
support emerging applications such as e-health, smart home,
and industrial internet [1]. However, IoT also poses new chal-
lenges to the network and communication protocols due to its
unique features. First, unlike traditional data communication
systems where most data transmission happens in the downlink
(DL), in IoT a significant portion of the communication occurs
in the uplink (UL). As a result, the massive number of
devices poses an enormous challenge on how to coordinate
UL data transmissions with a limited amount of spectral
resources. Second, in most IoT applications, each device
generates intermittent data with very short message payload.
Thus, the traditional data communication protocols, e.g., 4G-
LTE, are not suitable for IoT traffic due to expensive signaling
overhead before data transmission. Therefore, it remains an
open challenge to develop IoT UL communication protocols
that are low-overhead and highly spectrum-efficient.

This work was supported in part by NSF grants CNS-1703014 and CNS-
1702752, Defense Advanced Research Projects Agency (DARPA) under
contract No. HR001117C0048, and Academy of Finland under grant 311752.

MIMO (Multi-Input Multi-Output) technology has been
essential to achieve high spectrum efficiency in 4G cellular
networks [2]. Unfortunately, centralized MIMO schemes incur
high overhead due to the need of collecting Channel State
Information (CSI) from all users [2–4]. Recently, we proposed
in [5] an UL random-access protocol using Pseudo-Random
Beamforming (PRBF) [6] to exploit the performance gain
of MIMO with limited centralized control. The idea is to
let BS use multiple receiving beams at each time following
a pseudo-random sequence. Devices also know this pseudo-
random sequence (by sharing a common seed to the random
number generator). Thus, assuming that the device knows its
own CSI (which incurs low overhead when the channel is
static or changes very slowly), the device will be able to
know the effective channel quality of each beam at each time,
without further information exchange with the BS [6]. Then,
each device uses a channel-aware random access protocol,
which attempts transmission only when its effective channel
on the intended beam is strong whereas its interference to
other beams is weak. For an infinite-backlog system and
under the assumption of uniform load and channel conditions,
we showed that such a PRBF-based random access protocol
with low signaling overhead can match the throughput of a
centralized scheme in the order sense [5].

However, the design of the transmission scheme in [5]
uses non-adaptive parameters that must be chosen before-
hand based on the assumption of uniform load and channel
statistics. In practice, both the network load and the channel
statistics vary due to heterogeneous traffic patterns and non-
uniform spatial distribution of the devices. As a result, the
statistics of the effective channels and the level of contention
seen by different groups of devices can be highly non-uniform.
This setting then leads to an interesting joint beam-selection
and random access problem. Ideally, we want each device to
adaptively select beams and transmission probabilities based
on its own load and channel conditions, as well as that of
others. In reality, with the large number of devices and the
lack of global knowledge, it becomes extremely difficult to
design efficient algorithms with low overhead. In the literature,
most of the adaptive scheduling algorithms that can be shown
to achieve a provable fraction of the optimal capacity region
(such as the Max-Weight policy [7–10] and other distributed
approximations [11–14]) require each device to at least know
some information about the queue-length of its interferers.
When the number of interferers is large (as in massive IoT),
even collecting this level of queue-length information would
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have introduced significant overhead.
In this paper, we address this question by proposing a new

beam-selection and random access scheme with low overhead
that is independent of the number of interferering nodes, and
show that it can still achieve a provable fraction of the optimal
capacity region. We first map the multi-beam (MIMO) system
to a (virtual) multi-channel system with non-uniform load and
channel quality (see Section II-B), This mapping allows us
to borrow ideas from the distributed channel-assignment and
link scheduling algorithm of [14] (see Section III). However,
as we mentioned earlier, the channel assignment component
of the algorithm in [14] requires each device to know the
sum of the queue length at its interfering nodes. Further,
its link scheduling component requires computing a Maximal
Schedule [15] at each time, whose complexity may also grow
with the number of links. As a result, both components
incur high overhead when the number of interfering nodes is
large. Instead, our proposed algorithm in Section IV reduces
both types of overhead to be independent of the number
of interferers. Our key idea is to let the BS estimate, and
then broadcast to devices, an approximate sum of the total
backlog in each contention group. By replacing the Maximal
Scheduling component of [14] with a random access scheme
whose attempt probability depends on this estimate, the BS can
then update this estimate by simply observing the idle, success,
and collision events of each contention group. In this way,
no explicit exchange of queue-length information is needed.
We rigorously show that our proposed algorithm can achieve
at least 0.24 fraction of the optimal capacity region of the
(virtual) multi-channel system.

We note that this idea of estimating the system backlog
based on random access events has been used for stabilizing
ALOHA in [16] and [17]. However, the work there assumes
either a single channel or a multi-channel system with ho-
mogeneous channels (and thus a uniformly-random channel-
selection policy suffices). In contrast, our setting has heteroge-
neous channels, and therefore the random access component
must be integrated with an adaptive beam/channel-selection
component. Thus, the analysis of the joint control algorithm
becomes much more difficult, and requires a new Lyapunov
drift analysis (see Section IV). To the best of our knowledge,
our work is the first to utilize such backlog estimation as a
component in a larger joint control algorithm to achieve a
provable fraction of the optimal capacity with low overhead.

Our work is related to the large literature of distributed
scheduling algorithms for ad hoc wireless networks (e.g, [11],
[13], [14], [18]). Among these algorithms, CSMA is shown
to achieve full capacity and requires each link to only use
its own queue length to decide the attempt probability [18].
However, due to its large mixing time, CSMA may suffer large
delay that grows with the size of the network, which would be
unsuitable for IoT with a massive number of devices. For most
other algorithms that require the queue length information of at
least the interfering nodes, one common way to further reduce
the overhead is to perform “lazy update,” i.e., to exchange
queue length information infrequently [19]. However, in order

Fig. 1. The BS uses a PR sequence that is known at both the BS-side and
the device-side to coordinate the beamforming vectors used at every time.

to attain the same level of low overhead as our proposed
algorithm, the update frequency would have to be inversely
proportional to the number of interfering nodes, which will
also likely lead to large delay. Our work uses a different way
to reduce the overhead, i.e., via backlog estimates based on
random access events. Thus, the techniques that we developed
may be of independent interest to other related problems facing
high overhead. Finally, although Sparse-Code Multiple Access
(SCMA) [20] and other related random access algorithms have
been studied for IoT [21–23], they do not exploit the MIMO
gain, and thus are orthogonal to our work.

II. SYSTEM MODEL

A. Pseudo-Random Beam-Forming (PRBF)

We consider a single-cell system (Fig. 1) where a base-
station (BS) with M antennas serves N IoT devices, each
of which has only a single antenna (in order to keep the
cost of IoT devices low). We focus on the uplink, where
the BS aims to decode the data transmissions from the IoT
devices. Ideally, BS should be able to receive Θ(M) UL
transmissions at the same time. The Pseudo-Random Beam-
Forming (PRBF) scheme in [6] attains this goal without the
need for the BS to acquire the UL Channel State Information
(CSI). Assume that time is slotted. With PRBF, the BS uses
a random beam pattern W(t) = [~w1(t), ..., ~wM (t)] at time
t. Each ~wb(t) ∈ CM , b = 1, ...,M, represents a receiving
beamforming vector, and the BS uses M receive beamforming
vectors simultaneously for decoding. Suppose that there are
H possible beam patterns {W1, ...,WH}. At each time, the
BS picks W(t) from one of the H beam patterns uniformly
randomly, according to a pseudo random (PR) sequence. This
PR sequence is also known to each device (by sharing a
common seed to a random number generator) [6]. Thus, both
the BS and the devices know all receive beamforming (BF)
vectors used at all times, without further information exchange.

To use such a PRBF scheme, we assume that each device
knows its own uplink CSI ~gi ∈ CM to all M antennas, which
can be acquired with low overhead if the CSI is symmetric
between UL and DL, and is static or changes very slowly.
Further, assume that the transmission power Pi of each device
i is fixed. Suppose that the h-th beam pattern is chosen at
time t, i.e., W(t) = Wh = [~wh1 , ..., ~w

h
M ]. Each device i can

then compute its effective channel gain ghib to the BS on each
beam b = 1, ...,M , i.e., ghib = |(~gi)T ~whb |2. Let Bhi denote the
beam with the highest effective channel gain ghib for device
i, among all beams b from the beam pattern Wh. Intuitively,
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the device i should use the best beam Bhi for transmission,
in the sense that it expects the BS to use the beam Bhi to
decode its transmission, and its interference signal that the BS
receives on every other beam should be low. Correspondingly,
we require that the device i may transmit under the beam
pattern Wh only if its interference power to every beam other
than Bhi is below a threshold P0. For convenience, in the rest
of the paper we will say that the device transmits “using” beam
Bhi from the beam-pattern Wh, even though it is actually the
BS that uses the beam for decoding. For the beam-selection
and random access scheme that we will develop in the rest of
the paper, we expect that at each time the average number of
transmitting devices using a particular beam to be around 1.
Thus, assuming that the device i is the only device transmitting
using beam Bhi from beam-pattern Wh, it can estimate its
average transmission rate as Hrhi , with rhi given by

rhi = log

(
1 +

Pig
h
i,Bh

i

(M − 1)P0 + n0

)
,

where n0 is the background noise and a total bandwidth of
H is assumed for simplicity. Note that at each time only one
device should transmit using a given beam, because otherwise
the BS will not be able to decode their signals. Further, note
that the value of rhi only depends on h and i, and rhi = 0 if
the device i is not allowed to transmit on beam pattern Wh

(i.e., when its interference power to any beam other than Bhi
is above P0).

For this paper, we assume that the set of beam-patterns and
the transmission powers of all devices are given, and they are
chosen in such a way that for each device there is at least one
beam-pattern that it can transmit. We refer the readers to [5],
[6], [24] for how such beam-patterns and power assignments
can be chosen for different types of channel models.

B. Mapping to a Multi-Channel System

With the above system model, we can equivalently view
the system as a (virtual) multi-channel system. There are
H (virtual) channels. The h-th channel corresponds to beam
pattern Wh. At each time t, each channel h appears with
probability 1/H . For each beam b of beam-pattern Wh,
there may be many devices who can transmit using beam b.
However, only one of them can transmit at a time. Thus, we
can view this set of devices as a contention group in channel
h. Note that by our setup, each device can only belong to one
contention group in each channel h. Thus, we let Ih(i) denote
the contention group that device i belongs to in channel h, and
Ih(i) = ∅ if device i is not allowed to transmit in channel h.
Then, the transmission rate that a device i gets when channel
h appears is simply Hrhi , assuming that no other devices in
Ih(i) transmit at the same time. Again, rhi = 0 if the device i
is not allowed to transmit on channel h (i.e., when the beam-
pattern is Wh). By our definition, if k ∈ Ih(i), we must also
have Ih(k) = Ih(i). We use Ih to denote all M contention
groups in each channel h.

With the above mapping, the multi-channel system is com-
pletely specified by Ih(i) and rhi for all i and h. Thus, in the

Fig. 2. Multi-channel virtual queues schematics.

rest of the paper, we will discuss the algorithm design based
on this multi-channel model.

C. Queue Dynamics and Capacity Region

Let Ai(t) denote the number of packet arrivals at device i at
time t. Throughout the paper, we assume that the arrivals are
independent across different devices and i.i.d. in time. Denote
the arrival rate vector ~λ = [λ1, ..., λN ] where λi = E[Ai(t)].
Here, ~λ models the non-uniform loads of IoT devices. Suppose
that the (virtual) channel h appears at time t. Let Di(t) = Hrhi
if device i transmit successfully on channel h (i.e., Ih(i) 6= ∅
and no other devices in its contention group transmit at the
same time), and Di(t) = 0, otherwise. Let Qi(t) be the
number of packets queued at device i at the beginning of
time slot t. Then, the evolution of Qi(t) can be written as
Qi(t+ 1) = [Qi(t) +Ai(t)−Di(t)]

+
, where [·]+ denote the

projection function max(·, 0). We say that the system is stable
if the queue lengths at all devices remain finite [14], i.e.,

lim
T→∞

1

T

T∑
t=1

1{
∑N

i=1Qi(t)>η} → 0, a.s. as η →∞.

We define the capacity region Ω under a particular policy
as the set of ~λ such that the system remains stable. It is
not difficult to show that, if a centralized scheduler knows
the entire system state at all time and can schedule all
transmissions without collision, its capacity region will be
upper bounded by

Ω0 =
{
~λ
∣∣∣ ∃λhi such that

∑
k∈Ih(i)

λhk
rhk
≤ 1 and

H∑
h=1

λhi = λi,

for all i, h
}
. (1)

In this paper, we wish to design low-overhead control algo-
rithms for massive IoT scenarios, and thus we cannot afford
centralized control. The capacity region Ω that we can attain
will then be a subset of Ω0. An algorithm is said to be η-
optimal if it can stabilize the system at any load ~λ that lies
strictly inside ηΩ0, where η is called the efficiency ratio. Our
goal is then to design a low-overhead beam/channel-selection
and multi-access algorithm with a provable efficiency ratio η.

III. A JOINT CHANNEL-ASSIGNMENT AND SCHEDULING
ALGORITHM WITH EXACT CONGESTION INFORMATION

The multi-channel model allows us to borrow ideas from
the rich literature of scheduling algorithms for ad hoc wireless
networks [8], [11], [13], [14]. In particular, although it is well-
known that Maximum Weight Scheduling (MWS) can achieve
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the full capacity region Ω0, it requires centralized control and
incurs high communication overhead due to the need to obtain
a global “view” of the system at all times. As we discussed
in the introduction, many distributed and lower-complexity
scheduling algorithms have been developed to address the
weakness of MWS. However, most of them require each
node to at least know some information of the backlog of its
interfering nodes, which also incur high overhead when the
number of interfering nodes is large. Below, we will describe
one particular algorithm that is of interest to us, which is the
distributed channel-assignment and scheduling algorithm of
[14]. It requires each node to know the sum of the backlog
at interfereing nodes. We will then discuss the challenges to
apply this algorithm to the massive IoT setting.

A. The Algorithm of [14]

For a multi-channel system with H channels, the algorithm
of [14] lets each device maintain H + 1 virtual queues. There
is one virtual queue qhi , h = 1, ...,H that corresponds to
each of the H channels, plus another virtual queue q0

i . As
shown in Fig. 2, when incoming packets arrive at device i,
they first enter virtual queue q0

i . Then, a channel assignment
algorithm determines how to route packets from q0

i to each
per-channel virtual queue qhi . Once a packet is in the per-
channel virtual queue qhi , it will only transmit on channel h.
For each contention group I in channel h, define

Nh
I (t) =

∑
k∈I

qhk (t)

rhk
. (2)

Thus, Nh
I can be viewed as the congestion information,

which represents the current total backlog (normalized by each
device’s rate) in contention group I of channel h. Further, let
αi be an arbitrary positive constant chosen for device i. For
our setting, [14] makes channel assignment and scheduling
decisions as the MC-JCAS algorithm in Algorithm 1. For each
device i, let xhi (t) be the number of packets that are routed
from q0

i to qhi at time t.

Algorithm 1: Multi-channel Joint Channel-Assignment
and Scheduling (MC-JCAS)

1 For all channels h and for all devices i:
2 If Ih(i) = ∅, then xhi (t) = 0; Otherwise,

3 if q0i (t)rhi
αi

≥ Nh
Ih(i) ,

∑
k∈Ih(i)

qhk (t)

rhk
∧ q0

i (t) ≥ rhi then
4 xhi (t) = rhi ;
5 else
6 xhi (t) = 0;

7 Suppose that channel h(t) appears at time t. A maximal
schedule [14] is computed for all I ∈ Ih(t).

Note that, in Line 2-6 of Algorithm 1, the decision is made
by each device independently. Then, the virtual queue q0

i

evolves as q0
i (t + 1) = q0

i (t) + Ai(t) −
∑H
h=1 x

h
i (t). In Line

7, a maximal schedule [14] is computed for all contention
groups I ∈ Ih(t). In other words, for any contention group

I ∈ Ih(t) such that at least one device in I has backlog
q
h(t)
i (t) ≥ Hr

h(t)
i , exactly one of them will be scheduled to

transmit. Suppose that this transmitting device in contention
group I is i. Thus, we have Dh(t)

i (t) = Hr
h(t)
i , and all other

devices i′ 6= i in the same contention group I will have
D
h(t)
i′ (t) = 0. Then, all virtual queues qhi for channel h(t)

are updated by qh(t)
i (t + 1) = q

h(t)
i (t) + x

h(t)
i (t) −Dh(t)

i (t),
and all virtual queues for other channels h′(t) 6= h(t) are
updated by qh

′(t)
i (t+ 1) = q

h′(t)
i (t) + x

h′(t)
i (t).

As in [14], the channel assignement decision in Line 2-
6 of Algorithm 1 can be interpreted with the notion of
“congestion costs.” In particular, the quantity q0i (t)

αi
can be

viewed as the backlog cost at device i. Meanwhile, the quantity
Nh
Ih(i) =

∑
k∈Ih(i)

qhk (t)

rhk
can be viewed as the congestion cost

of channel h seen by device i, which is contributed by the
entire contention group that device i belongs to. Therefore,
device i will assign packets to qhi only if the backlog cost
is higher than the congestion cost of channel h, normalized
by the channel rate rhi . This normalization is the key: packets
are more likely to be assigned to the per-channel queue qhi
if the corresponding rate rhi is high. This design thus helps
the devices to use channels that are good and that are less
congested. Using the techniques of [14], it is not difficult to
show that the above algorithm will achieve the full capacity
region Ω0 (i.e., with an efficiency ratio of 1).

B. The Challenge of Applying MC-JCAS to Massive IoT

Despite its distributed operation, MC-JCAS still requires
each device to know the exact congestion information from
its contention group at each time. To obtain this information,
each device needs to report its current per-channel queues
either to the BS or to each other. When the number of
devices in a contention group is large, such reporting will
incur high overhead. Further, distributed computation of the
maximal schedule [15] may also incur overhead that grows
with the number of interfering nodes. Therefore, this algorithm
is not suitable for massive IoT scenarios where low overhead
is required. As we discussed in the introduction, similar
levels of overhead are also required by most other distributed
scheduling algorithms with provable efficiency ratios. Standard
approaches to address this issue include using CSMA [18]
or “lazy update” [19], both of which tend to introduce large
delay. In the next section, we will propose a new approach to
address this overhead issue, which will reduce the overhead
to be independent of the number of interfering nodes, and still
attain a provable efficiency ratio.

IV. LOW-OVERHEAD CHANNEL-SELECTION AND
RANDOM ACCESS USING CONGESTION ESTIMATION

In this section, we propose a new channel/beam-selection
and random access algorithm that eliminates both the need
of reporting the queue length from the devices, and that of
distributively computing the maximal schedules. As a result,
our algorithm will reduce the overhead to be independent of
the number of interfering nodes. Our algorithm uses two key
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ideas. First, instead of having each device directly report its
per-channel queues, we let the BS form an estimate of the
congestion information Nh

I (t) in each contention group I and
each channel h, and update this estimate by observing the
events that happen in the contention group. Let ShI (t) denote
this estimate for Nh

I (t). Note that the BS can let all devices
know these estimates via a simple broadcast. The devices can
then make their channel-assignment decisions independently
based on such estimates. Second, in order for the BS to update
such estimates, it needs to have some observation as input. We
thus let each device follows a random access policy whose
attempt probability depends on the estimate ShI (t). In this
way, the channel events (i.e., idle, success, collision) become
a function of both the true congestion information Nh

I (t) and
its estimate ShI (t). The BS can then update the estimate ShI (t)
based only on observing the channel events, without additional
overhead. Further, this random access policy eliminates the
need to distributively compute a maximal schedule.

We note that the idea of stabilizing ALOHA based on back-
log estimates have been proposed in [16] for a single-channel
system. More recently, the work in [17] extends the idea to
multi-channel systems where all channels are homogeneous. In
contrast, our work is the first to use this idea in a setting where
the channels are heterogeneous (as is the case with PRBF). For
homogeneous channels, a simple uniformly-random channel
assignment scheme suffices. Thus, one only needs to estimate
one piece of congestion information for all channels together.
In contrast, for heterogeneous channels, each channel (and
each contention group) corresponds to one piece of congestion
information. Further, the channel assignment algorithm also
depends on the congestion estimates, which creates a complex
coupling between the random access component and the
channel assignment component. As a result, the analysis of
the system dynamics becomes much more complicated than
that of [16], [17]. In Section IV-D, we will develop a new
Lyapunov drift analysis to address this difficulty. Next, we first
present the random access policy, followed by the proposed
algorithm and its analysis.

A. Low-overhead Queue-based Random Access Policy Using
Congestion Estimate

In the L-QRA policy presented in Algorithm 2, each device
i uses the congestion estimate ShIh(i) and its own backlog qhi (t)
to determine the transmission probability.

Consider one contention group I in channel h. Suppose that
the true congestion information is Nh

I and its estimate is ShI .
Let θ = Nh

I /S
h
I . Under L-QRA, the idle probability that no

devices transmit in contention-group I is

Pr{idle(I, h)} =
∏
k∈I

phk,0 = e−N
h
I /S

h
I = e−θ. (3)

The success probability that exactly one device transmits a
data message is

Pr{success(I, h)} =
∑
k∈I

phk,1
∏
j 6=k

phj,0 =
Nh
I

ShI
e
−Nh

I
Sh
I = θe−θ,

(4)

Algorithm 2: Low-overhead Queue-based RA (L-QRA)

1 Suppose that channel h appears at time t. The BS
broadcasts ShI for each contention group I ∈ Ih;

2 For each device i:
3 if qhi (t) < Hrhi or Ih(i) = ∅ then
4 Stay silence;
5 else
6 Set nhi = qhi (t)/rhi ;
7 switch z ∼ U [0, 1] do
8 when z ∈ [0, phi,0) where phi,0 = e

−nh
i /S

h

Ih(i) , stay
silence;

9 when z ∈ [phi,0, p
h
i,0 + phi,1) where

phi,1 = (nhi /S
h
Ih(i))e

−nh
i /S

h

Ih(i) , transmit Hrhi
packets from the virtual queue qhi (t);

10 otherwise transmit a dummy collision signal with
probability phi,2 = 1− phi,0 − phi,1;

11 end
12 end

and the rest 1 − e−θ − θe−θ becomes the “collision” prob-
ability Pr{collision(I, h)}. Readers may notice that, with
probability phi,2, device i transmits a collision signal. Thus,
even if this device is the only transmitter, the channel will
be considered to have experienced a collision (and thus
the event collision(I, h) occurs). This assumption simplifies
our analysis since the above probabilities depend only on
θ = Nh

I /S
h
I , and not on the exact backlog of each device.

On the other hand, this design will lead to some waste in
the system capacity. When nh

i

Sh

Ih(i)

is small, we can verify that

phi,1 = Θ(nhi /S
h
Ih(i)) and phi,2 = O(nhi /S

h
Ih(i)). Thus, we

expect that the fake collision will play a small role when the
number of interfering nodes is large, which will be confirmed
by our simulation results in Section V.

If the congestion estimate is accurate, i.e., θ = Nh
I /S

h
I = 1,

then the expected number of transmissions in each contention
group is

∑
k∈I(1 − phi,0) ≤

∑
k∈I n

h
i /S

h
I = 1. Further,

the success probability is 1/e, which is also the optimal
throughput for ALOHA [25]. Compared to maximal schedul-
ing that schedules exactly one successful transmission in the
contention group, we thus expect that the above random access
policy will lead to a 1/e reduction in the capacity region.
However, the congestion estimate is not always accurate.
Therefore, we have to carefully account for the impact of the
estimate errors on the system performance.

B. Updating the Congestion Estimates

We now describe how the BS updates the congestion
estimates. Similar to [16], we assume that the BS can observe
the channel events in each contention group I and each
channel h. Indeed, for each contention group I in channel
h, idle means that the BS does not detect any signal power
using the corresponding beamforming vector; success means
that the BS can successful decode a data message using the
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corresponding beamforming vector; and collision means that,
using the corresponding beamforming vector, the BS either can
detect a signal but cannot decode it, or can decode a message
but it contains a collision signal. Then, the BS updates the
congestion estimate ShI (t) by

ShI (t+ 1) = max{1, ShI (t) + ∆ShI (t)}, (5)

∆ShI (t) = a1idle(I,h)(t) + b1success(I,h)(t)

+c1collision(I,h)(t). (6)

Note that no additional overhead to report the per-channel
queues is needed. Intuitively, the parameter a should be
negative so that ∆ShI (t) < 0 whenever Nh

I is much smaller
than ShI (and thus the channel is idle most of the time), and the
parameter c should be negative so that ∆ShI (t) > 0 whenever
Nh
I is much larger than ShI (and thus the channel experiences

collisions most of the time). We will give specific values for
a, b and c below when we prove the efficiency ratio of the
overall algorithm.

C. The Complete Algorithm and Main Result

Algorithm 3 describes the our proposed low-overhead joint
channel/beam-selection and random access algorithm (L-MC-
JCARA) with congestion estimation. Similar to MC-JCAS,
here αi is an arbitrary positive constant chosen for device i.

Algorithm 3: (L-MC-JCARA)

1 Suppose that channel (i.e., beam pattern) h(t) appears at
time t. The BS broadcasts Sh(t)

I for all I ∈ Ih(t);
2 For all channels h and each device i, determine

channel-assignment xhi (t) for all h as follows. If
Ih(i) = ∅, then xhi (t) = 0. Otherwise,

3 if q0i (t)rhi
αi

≥ 1.2ShIh(i) and q0
i (t) ≥ rhi then

4 xhi (t) = rhi ;
5 else
6 xhi (t) = 0;
7 end
8 For the current channel h(t), access the channel

according to L-QRA in Algorithm 2;
9 BS updates Sh(t)

I from channel outcomes using (6).

Note that L-MC-JCARA differs from MC-JCAS in using
the contention estimates and in using L-QRA instead of
maximal scheduling. Further, there is an additional factor of
1.2 in the comparison step in line 3, which is needed for our
analytical results. Our main result is as follows.

Theorem 1. Suppose that BS chooses the parameters a =
lH(1 − e) and b = c = lH in (6), where l = 22Kmax and
Kmax is the maximum number of devices in any contention
group I . Then, our proposed L-MC-JCARA scheme can stabi-
lize any arrival rate vector ~λ that is strictly inside ηΩ0, where
η = 0.24.

Theorem 1 shows that our proposed algorithm achieves
an efficiency ratio of at least η = 0.24. The assumption

of the theorem requires the parameters a, b, and c to grow
linearly with the number of interfering nodes. While we
need this assumption for our analysis, we have found in our
simulation results that using values independent of the number
of interfering nodes tends to produce an even smaller queue
backlog. We thus conjecture that this assumption may be
removed via finer analysis, which we leave for future work.

D. Sketch of Proof

In the rest of the section, we will sketch the main steps of
the proof for Theorem 1, which is also our main contribution.
As we discussed at the beginning of this section, our analysis
is more difficult than that of [16], [17] because we consider
heterogeneous channels and have to account for the complex
interaction between the random access component and the
channel-assignment component, both of which are coupled by
the congestion estimates. Due to this reason, we cannot use
the Lyapunov drift analysis from [16], [17].

In the following, we will construct a new Lyapunov function
for the multi-channel system with congestion estimation, and
study its expected drift. Let ~q(t) denote the system state at time
t, which collects all virtual queues qhi (t) and all congestion
estimates ShI (t). Our new Lyapunov function for the entire
system with congestion estimation consists of three parts, i.e.,

Vtot(~q(t)) = V0(~q(t)) + VN (~q(t)) + VN,S(~q(t)). (7)

The first two parts are given as follows, and are similar to
those used in the proof in [14]:

V0(~q(t)) =
N∑
i=1

(q0
i (t))2

2αi
, and (8)

VN (~q(t)) =
H∑
h=1

N∑
i=1

qhi (t)

2rhi

∑
k∈Ih(i)

qhk (t)

rhk
=

H∑
h=1

∑
I∈Ih

Nh
I (t)2

2
,

(9)
where Nh

I (t) is the congestion information defined in (2).
The second equality of (9) holds because, in each channel
h, Ih(i) = Ih(k) for any i, k ∈ I . The third part of (7) is

VN,S(~q(t)) =
H∑
h=1

∑
I∈Ih

1

2

(
Nh
I (t)− ShI (t)

)2
, (10)

which captures the gap between the exact Nh
I and its estimate

ShI . Although inspired by [16], (10) is different from the
Lyapunov function used there, and is essential for analyzing
the coupling with the channel-assignment component of our
algorithm. Let ∆V0(~q(t)) = V0(~q(t+1))−V0(~q(t)) denote the
drift of V0(~q(t)) and define other drifts analogously. Similar
to [14], the expected drifts of (8) and (9) can be bounded by,

E[∆V0(~q(t))|~q(t)] ≤
N∑
i=1

q0
i (t)

αi

(
λi −

H∑
h=1

xhi (t)

)
+ C1,

(11)

E[∆VN (~q(t))|~q(t)] ≤
H∑
h=1

∑
I∈Ih

Nh
I (t)∆Nh

I (t) + C2, (12)
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where C1 and C2 are constants and ∆Nh
I (t) = E[Nh

I (t+1)−
Nh
I (t)|~q(t)]. From (4), we can show that

∆Nh
I (t) =

∑
k∈I

xhk(t)

rhk
− θhI (t) exp(−θhI (t)),

where θhI (t) =
Nh

I (t)

Sh
I (t)

. For (10), we can show that its expected
drift is bounded by, for some constant C3,

E[∆VN,S(~q(t))|~q(t)] (13)

≤
H∑
h=1

∑
I∈Ih

(Nh
I (t)− ShI (t))

(
∆Nh

I (t)−∆ShI (t)
)

+ C3,

where ∆ShI (t) = 1
H E[∆ShI (t)] and 1/H corresponds to the

probability that channel h appears at time t. By the definition
of ∆ShI (t) in (6), the probabilities (3)-(4), and the choices of
a, b and c in the theorem, we have,

∆ShI (t) =
1

H

[
c+ (a− c)e−θ

h
I (t) + (b− c)θhI (t)e−θ

h
I (t)
]

= l(1− e1−θhI (t)). (14)

Suppose (1+ε)~λ∈ ηΩ0. By definition, there exist x̃hi such that

(1 + ε)λi ≤
H∑
h=1

x̃hi , and
∑

k∈Ih(i)

x̃hk
rhk
≤ η, for all i and h.

(15)
Here, x̃hi can be viewed as a reference for the desirable average
number of packets routed to virtual queue qhi in the long run.
Therefore, the total Lyapunov drift for the entire system is

E[∆Vtot(~q(t))|~q(t)]

≤
N∑
i=1

q0
i (t)

αi

(
λi −

H∑
h=1

xhi (t)

)
+

H∑
h=1

∑
I∈Ih

Nh
I (t)∆Nh

I (t)

+
H∑
h=1

∑
I∈Ih

(Nh
I (t)− ShI (t))

(
∆Nh

I (t)−∆ShI (t)
)

+ C4,

≤
N∑
i=1

q0
i (t)

αi

(
λi −

H∑
h=1

x̃hi

)
+

N∑
i=1

q0
i (t)

αi

( H∑
h=1

[
x̃hi − xhi (t)

] )
+

H∑
h=1

∑
I∈Ih

Nh
I (t)∆Nh

I (t)

+
H∑
h=1

∑
I∈Ih

(Nh
I (t)− ShI (t))

(
∆Nh

I (t)−∆ShI (t)
)

+ C4

≤
H∑
h=1

∑
I∈Ih

[∑
k∈I

q0
k(t)

αk

(
x̃hk − xhk(t)

)
+Nh

I (t)∆Nh
I (t)

+ (Nh
I (t)− ShI (t))

(
∆Nh

I (t)−∆ShI (t)
)]
− ε

N∑
i=1

q0
i (t)λi
αi

+ C4, (16)

where C4 = C1+C2+C3. Denote the term in the [·] of (16) as
∆V hI . The last inequality of (16) thus successfully decouples
the total drift of the system into the sum of single-channel

drifts ∆V hI across all contention groups I and channels h.
To show that the total Lyapunov drift is negative, it is then
sufficient to show that ∆V hI is non-postive for all I and h.

Per-channel One-contention-group Lyapunov Drift ∆V hI

For each channel h and each contention group I ∈ Ih, we
next show that the per-contention-group drift ∆V hI is non-
positive. Note that the expected changes ∆Nh

I (t) and ∆ShI (t)
depend on θhI (t). We will divide into multiple cases with
different ranges of θhI (t). For ease of exposition, we will drop
the subscript I and superscript h (i.e., use N(t), S(t) and
θ(t) instead of Nh

I (t), ShI (t) and θhI (t)), whenever there is no
source of confusion.

1) When 0.9 ≤ θ(t) ≤ 1.1: In this case, the values of
N(t) and S(t) are close. Thus, we expect that (i) the success
rate of the contention group will be close to 1/e, and (ii) the
system dynamics will be close to that of MC-JCAS (and that of
[14]), which knows the true N(t). we will make this intuition
rigorous by considering the per-device drift under its different
assignment decisions. Note that the drift ∆V hI in (16) can be
written as

∆V hI =
∑
k∈I

q0
k(t)

αk

(
x̃hk − xhk(t)

)
+N(t)∆N∗(t)

+ (N(t)− S(t))
(

∆N∗(t)−∆S(t)
)

(17)

+ (2N(t)− S(t))
(

∆N(t)−∆N∗(t)
)
, (18)

where we choose ∆N∗(t) = 0.9e−0.9 − θ(t)e−θ(t), which
is non-positive since 0.9 ≤ θ(t) ≤ 1.1. We thus have
N(t)∆N∗(t) ≤ 0. Further, for (17), we have

Eq. (17) = S(t)[θ(t)− 1]

[
1

e
− θ(t)e−θ(t) − l(1− e1−θ(t))

]
+ (N(t)− S(t))

(
0.9e−0.9 − 1

e

)
≤ −δ(N(t)− S(t)) ≤ δS(t), (19)

where δ = 1/e − 0.9e−0.9 = 0.002, and the inequality holds
because for l ≥ 1 we can verify that 1/e−θe−θ− l(1−e1−θ)
is positive when θ < 1, and is negative when θ > 1. Define
ỹhk = 0.9e−0.9rhk/|I|. We then have, from (18),

∆V hI ≤
∑
k∈I

[
(2N(t)− S(t))

(
xhk(t)

rhk
− ỹhk
rhk

)

+
q0
k(t)

αk
(x̃hk − xhk(t))

]
+ δS. (20)

Denote by ∆Lhk each term in the [·] in the last expression.
Recall that our threshold-based channel assignment policy
assigns xhi (t) = rhk if q

0
k(t)rhk
αk

> 1.2S(t); otherwise, xhk(t) = 0.
For each device k ∈ I , we now divide into two sub-cases.
Case 1: When q0

k(t)rhk/αk > 1.2S(t). In this case, we
have xhk(t) = rhk . As x̃hk ∈ [0, rhk ] and ỹhk ≤ 1

er
h
k , we thus
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have xhk(t) − ỹhk ≥ 0 and x̃hk − xhk(t) ≤ 0. Further, since
N(t) < 1.1S(t), we have 2N(t)− S(t) < 1.2S(t). Thus,

∆Lhk ≤ 1.2S(t)

(
xhk(t)

rhk
− ỹhk
rhk

)
+ 1.2S(t)

x̃hk − xhk(t)

rhk

≤ 1.2S(t)

(
x̃hk
rhk
− ỹhk
rhk

)
.

(21)

Case 2: When q0k(t)rhk
αk

≤ 1.2 · S(t). In this case, we have
xhk(t) = 0, and thus x̃hk − xhk(t) ≥ 0 and xhk(t) − ỹhk ≤ 0.
Since N ≥ 0.9S, we have 2N(t)− S(t) > 0.8S(t), and then

∆Lhk ≤ 1.2S(t)
x̃hk − xhk(t)

rhk
+ 0.8S(t)

(
xhk(t)

rhk
− ỹhk
rhk

)
= 1.2S(t)

(
x̃hk
rhk
− 2

3

ỹhk
rhk

)
. (as xhk(t) = 0) (22)

Combining the two cases and using (20), ∆V hI can be upper
bounded by∑
k∈I

∆Lhk + δS(t) ≤ 1.2S(t)
∑
k∈I

(
x̃hk
rhk
− 2

3

ỹhk
rhk

)
+ δS(t)

≤ 1.2S(t)

(
η − 2

3
0.9e−0.9

)
+ δS(t)

≤ −δ1S(t) ≤ −δ1
2
S(t)− δ1

2

N(t)

1.1
, (23)

where δ1 = 1.2( 2
30.9e−0.9 − η)− δ > 0, since η = 0.24.

2) When θ(t) > 1.1: In this case, the exact N(t) may be
much larger than its estimate S(t). Thus, the first two parts of
(7) may not produce a negative drift. Intuitively, we need the
third part of (7) to provide a strong enough negative drift for
the entire Lyapunov function. The following derivations make
this intuition rigorous. Let K = |I| denote the size of the
contention group I . From (16), the drift ∆V hI can be written
as

∆V hI =

∑
k∈I

[ ∆V0,k︷ ︸︸ ︷
q0
k(t)

αk
(x̃hk − xhk(t)) +

∆VN,k︷ ︸︸ ︷
N(t)

(
xhk(t)

rhk
− θ(t)e−θ(t)

K

)

+ (N(t)− S(t))

(
xhk(t)

rhk
− θ(t)e−θ(t)

K
−

∆ShI (t)

K

)
︸ ︷︷ ︸

∆VN−S,k

]
.

(24)
Let ∆Lhk denote each term in the [·] of the above expression.
Notice that ∆ShI (t) is increasing and has one root at θ(t) = 1.
Thus, ∆ShI (t) > 0 for θ(t) > 1.1. We now divide into two
sub-cases.
Case 1: When q0k(t)rhk

αk
≥ 1.2S(t), in which case xhk(t) = rhk .

Note that this is the more difficult case because the positive
drift of the first two terms of ∆Lhk can be quite large. To see
this, consider the scenario where both q0

k(t) and S(t) are much
smaller than N(t). If the device knew the true N(t), it should
have not routed packets to qhk . Now that xhk(t) = rhk , N(t)

instead increases further, which adds a large increment to the
Lyapunov drift. Thus, the only hope to have a negative drift is
to reduce (N(t)− S(t))2, i.e., by increasing S(t) sufficiently
fast. Specifically, since q0k(t)rhi

αk
≥ 1.2S(t) and xhk(t) = rhk ,

we have q0k(t)
αk

(x̃hk − xhk(t)) ≤ 1.2S(t)(
x̃h
k

rhk
− 1). Thus, we can

bound ∆Lhk as

∆Lhk ≤ 1.2S(t)(
x̃hk
rhk
− 1) + S(t)

(
1− θ(t)e−θ(t)

K

)
+ (N(t)− S(t))

(
2− 2

θ(t)e−θ(t)

K
+
l(e1−θ(t) − 1)

K

)
︸ ︷︷ ︸

negative when l ≥ 22K

≤1.2S(t)(
x̃hk
rhk
− 1) + S(t)

(
1− θ(t)e−θ(t)

K

)
− δ2N(t)

≤ S(t)

(
1.2

x̃hk
rhk
− 0.2

)
− δ2N(t), (25)

where δ2 > 0 and in the second inequality we have used
N(t)−S(t) ≥ 0.1/1.1N(t) > 0 and 2K − 2θe−θ + l(e1−θ −
1) ≤ 2K − l(e1−θ − 1) < 0 for l ≥ 22K and θ > 1.1.

Remark 1. Note that the choice of l ≥ 22K is only needed
to cover this case. Intuitively, the worst scenario is that all
devices in the contention group fall into this case. As a result,
N(t) increase by Θ(K), and we need S(t) to increase at the
same magnitude to obtain a total negative drift, which leads
to the choice of l = Θ(K). However, in reality this worst
scenario may be very unlikely to occur. This explains why in
our numerical results, a much smaller value of l suffices to
stabilize the system. See details in Section V.

Case 2: When q0k(t)rhk
αk

< 1.2S(t), in which case xhk(t) = 0

Compared to Case 1, this is the easier case because, even if
the device knew the true N(t), it may very well use the same
decision xhk(t) = 0. Thus, we expect that the negative drift
will be easier to establish. We can show that, for δ3 > 0,

∆Lhk ≤ S(t)

(
1.2

x̃hk
rhk
− 0.449

K

)
−δ3N(t), for l ≥ 1. (26)

The detailed proof is similar to Case 1, and is omitted due to
space limits. Combining Case 1 and Case 2, we have

∆V hI =
∑
k∈I

∆Lhk ≤
∑
k∈I

S(t)(1.2
x̃hk
rhk
− 0.449

K
)− δ4N(t)

≤ S(t)(1.2η − 0.449)− δ4N(t)

≤ −δ5S(t)− δ4N(t), (27)

where δ5 = 0.449 − 1.2η > 0, since η = 0.24, and δ4 =
min{δ2, δ3}.

For the last case of 0 < θ(t) < 0.9, we can show ∆V hI <
−δ6S(t)−δ7N(t) using similar arguments. Details are omitted
due to space constraints. Combining all three cases of θ(t) and
using (16), we conclude that E[∆Vtot(~q(t))|~q(t)] < 0 whenever
~q(t) is large. The result of the theorem then follows.
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Fig. 3. Comparison of steady-state total queue length at different load
intensity for L-MC-JCAS and its variants.

V. SIMULATION RESULTS

In this section, we verify the performance of our proposed
L-MC-JCARA scheme in Algorithm 3 through simulation.
We simulate a cellular UL IoT system where the BS can
form M = 6 beams at each time to serve N = 300 IoT
devices. Although the system scale is relatively small for IoT,
it demonstrates the increased capacity region of our proposed
scheme over other schemes with comparable overhead. In
certain sense, a larger number of devices can be more favorable
for our proposed scheme, as each device only has a smaller
share of the load. More extensive numerical experiments will
be performed for the future work.

At each time, the BS can form one out of H = 2 beam
patterns according to PRBF. At the BS, we first set l = 22K
in Theorem 1. At the device side, we assume that the users
are distributed evenly so that K = 50 random devices belong
to each beam (contention group). As beam pattern varies,
each device will see two channels for transmission: one good
channel with expected rate 10 kbps, and a bad channel with
expected rate 2 kbps. At the beginning, each device i has
an initial amount of data in the 0-th virtual queue, i.e.,
q0
i (0) ∈ U(0, B0]. In the simulation, we vary the load intensity
γ fed to the devices, so that the sum offered load to each
contention group is 10γ kbps.

We first verify the stability of our proposed L-MC-JCARA.
We simulate the system for T = 106 time slots with B0 =
2500kb. In Fig 3, we plot the average steady-state total queue
length, QSS

total, versus different load intensity γ for our proposed
L-MC-JCAS and two variants: (i) using small value of l = 1
as we mentioned in Section IV-C, and (ii) treating the fake
collision as data transmissions. First, we observe that, in all
cases, QSS

total in the system increases as the load intensity
increases, up to the point when the system becomes unstable.
Our proposed L-MC-JCARA and the variant without fake
collision have similar performance on QSS

total and can maintain
system stability up to γ = 0.28, indicating the impact of
fake collision is small. We verify that the optimal centralized
scheduler cannot stabilize offer load of 10kbps. Thus the
achieved efficiency ratio at γ = 0.28 is at least 0.28. The
variant of L-MC-JCARA with l = 1 stabilizes the system up
to γ = 0.32 and obtains an even lower QSS

total. This is consistent

Fig. 4. Comparison of L-MC-JCAS and (i) uniformly random channel
assignment; (ii) lazy update.

of our previous conjecture that the large l in Theorem 1 is for
analysis purpose, and a smaller l performs well in practice,
especially when K = |I| is large. Thus, in the rest of the
section, we will use l = 1 when we simulate L-MC-JCARA.

Next, we demonstrate the advantages of L-MC-JCARA over
two other low-overhead multi-channel random access schemes:
(i) the uniformly random channel assignment (UR) used in
[17], which is originally proposed for homogeneous multi-
channel system; (ii) the L-QRA combined with “lazy” update
of congestion information N(t), i.e., the devices will report
their queue length to the BS once every 300 time slots. We
simulate for T = 5 · 105 time slots with B0 = 1000kb,
and plot QSS

total against different load intensity for the above-
mentioned three schemes in Fig. 4. We observe that, the system
QSS

total under UR becomes unstable for γ ≥ 0.08. This poor
performance of UR is because uniform assignment does not
account for heterogeneous channel qualities, i.e., a significant
amount traffic is assigned to low-rate channels, which exceeds
the channel capacity. Compared to L-MC-JCARA with l = 1,
the scheme with lazy update can stabilize the system up to
load intensity γ = 0.24, but with significantly higher QSS

total.
Moreover, the value of QSS

total under lazy update is oscillating
due to the increasing inaccuracy of congestion information
over time between two updates. In summary, our proposed
L-MC-JCARA attains lower QSS

total than both other schemes.

VI. CONCLUSION

In this work, we propose a L-MC-JCARA scheme for UL
massive IoT system under non-uniform channel qualities and
loads, and show that it can stabilize any offer load vector
that is strictly inside 0.24Ω0. A key novelty is to let the
BS update an estimate of the congestion information in each
contention group by observing only the channel events. As
a result, our work is the first in the literature to guarantee
stability in such a non-uniform multi-channel random access
system without any queue-length feedback from devices. In the
future, we will study the stability guarantee when a constant
value is used for l, and perform larger-scale simulation for
massive IoT systems. Moreover, we will study how to combine
our schedule with SCMA/NOMA (Non-orthogonal Multiple
Access) [20] to further lower the overhead.
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