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ABSTRACT
We study how to schedule data sources in a wireless time-sensitive

information system with multiple heterogeneous and unreliable

channels to minimize the total expected Age-of-Information (AoI).

Although one could formulate this problem as a discrete-time

Markov Decision Process (MDP), such an approach suffers from

the curse of dimensionality and lack of insights. For single-channel

systems, prior studies have developed lower-complexity solutions

based on the Whittle index. However, Whittle index has not been

studied for systems with multiple heterogeneous channels, mainly

because indexability is not well defined when there are multiple

dual cost values, one for each channel. To overcome this difficulty,

we introduce new notions of partial indexability and partial index,

which are defined with respect to one channel’s cost, given all other

channels’ costs. We then combine the ideas of partial indices and

max-weight matching to develop a Sum Weighted Index Matching

(SWIM) policy, which iteratively updates the dual costs and partial

indices. The proposed policy is shown to be asymptotically optimal

in minimizing the total expected AoI, under a technical condition

on a global attractor property. Extensive performance simulations

demonstrate that the proposed policy offers significant gains over

conventional approaches by achieving a near-optimal AoI. Further,

the notion of partial index is of independent interest and could be

useful for other problems with multiple heterogeneous resources.
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1 INTRODUCTION
Many emerging wireless applications (e.g., real-time control in

robotics systems, and data collection for IoT applications) rely on

timely status updates from information sources [1, 4]. In these appli-

cations, oftentimes only the information with the latest timestamp

is valuable to the receiver, while out-dated packets have little value.

These applications have motivated a growing body of literature in

optimizing the Age-of-Information (AoI), which is defined as the

elapsed time of the last-received information packet since it was

generated (at the source). Intuitively, AoI captures the freshness of

information from the data source’s perspective, and is considered

a more useful metric for time-sensitive information systems than

packet-level delays [15].

In this paper, we are interested in minimizing AoI for a wireless

system with multiple heterogeneous sources and channels. This is

a difficult setting that still lacks effective solutions in the literature.

Many existing work on minimum-AoI scheduling policies study

only a single-source system [10, 15]. For multiple sources, most of

the existing work assumes that data sources are transmitting in a

single shared channel [6–9, 14, 16]. Further, most of these studies

assume the channel to be reliable, with only a few extension to the

case of a single unreliable channel [8, 14, 16]. For studies that do

involve multiple channels, a recent article [12] assumes a homo-
geneous channel model, where each user-channel pair has equal

ON/OFF probability. Thus, the solutions in these studies cannot be

used in wireless systems that exhibit heterogeneous channel condi-

tion (e.g., transmission success probability) for each source-channel

pair, which is common due to antenna beamforming, frequency

selectivity and location-dependent fading [19, 23, 24]. [17] and [13]

are the closest work to ours, as they also study heterogeneous multi-

channel systems. [17] proposes a scheduling policy for ON/OFF

multi-channel systems based on max-age matching. Under a simi-

lar setting, [13] proposes a policy that is asymptotically 8-optimal

in minimizing the total weighted age. However, [17] and [13] as-

sume that the ON/OFF states of all channels are known before the

scheduling decisions are made. This assumption, combined with

the setting that the number of channels are large, ensures that

with high probability each source sees at least one ON channel. In

this way, the impact of unreliable channels can be absorbed by an

event with negligible probability in their analysis. In contrast, we

are interested in a model where the channel states are unknown

when scheduling decisions are made. Therefore, the question re-

mains open on how to design a provably optimal scheduling policy
to minimize AoI in time-sensitive information systems with multiple
heterogeneous and unreliable channels.

One of the key obstacles in deriving the optimal scheduling

policy under multiple heterogeneous sources and channels is the

complexity of the associated Markov decision problem. Note that
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such AoI optimization problems (regardless of the channel condi-

tions) are often formulated as Markov Decision Processes (MDP) or

Restless Multi-armed Bandits (RMAB), which in theory can be opti-

mally solved by value iteration [2, 3]. However, this approach suffers

from the curse of dimensionality and lack of insights. Therefore, it is
highly desirable to develop low-complexity and near-optimal solu-

tions. For single-channel systems, policies based on Whittle index

[21], whose complexity does not grow with the number of sources,

have been found to exhibit good performance. Further, they are

known to be asymptotically optimal when the number of sources

and the channel capacity both grow to infinity [6, 7, 14, 16, 20].

However, to the best of our knowledge, there have been no such

Whittle index policies for systems with multiple heterogeneous

channels/resources. Part of the difficulty is that Whittle’s notion

of “indexability” [21] is not well-defined when there are multiple

heterogeneous channels. Specifically, in [21], a project is indexable

if there is a single threshold for the channel cost, above which the

optimal action of the project will be passive (i.e., not to consume

the channel resource). Thus, Whittle indexability critically relies

on the assumption that there is only one dual cost for either a

single channel or a single group of homogeneous channels. For

heterogeneous multi-channel systems, each channel naturally has

a different dual cost. The optimal action of the project will also

depend on all channel costs. As a result, one cannot even define

such a threshold or index.

In this paper, we propose a new Whittle-like scheduling policy

for heterogeneous and unreliable multi-channel systems. Similar to

[21], we first formulate the MDP for the system, and decompose the

problem into per-source sub-problems using Lagrange relaxation

[3] (Section 2). However, to overcome the difficulty of Whittle

indexability as mentioned above, we introduce the new notions

of partial indexability and partial index, which are defined with

respect to the cost of one channel, given the costs of all other

channels (see Section 3 for detailed definitions). Then, we propose

a low-complexity Whittle-like scheduling policy, which we call

the Sum Weighted Index Matching (SWIM) policy, by computing

a maximum-weighted matching (MWM) between the sources and

channels, where the weight between each source-channel pair is the

above-defined partial index. Our key contribution in Section 3 is to

identify a precise-division condition, under which the SWIM policy

is asymptotically optimal, under a technical assumption on a global

attractor property (which has also been used in the literature [5, 18]).

To the best of our knowledge, our work is the first in the literature to

extend the concept of indexability to heterogeneous multi-channel

settings. We note that both the notion of partial indexability and

the SWIM policy are very general, and can be applied to various

large-scale MDP problems with multiple heterogeneous channels.

We then verify in Section 4 that our AoI problem indeed satisfies the

partial indexability and precise-division property. Our simulation

results in Section 5 shows that applying the SWIM policy to our AoI

problem produces significant performance gains over conventional

approaches, and achieves a near-optimal average AoI.

We note that in the RMAB literature there is also a line of work on

multi-action bandits [5, 18]. However, we emphasize that “actions”

and “channels” are very different, because the multiple actions in

[5, 18] are still applied to a single resource. This is the reason why

[5] can still define a Whittle index based on the (single) dual cost

Figure 1: Uplink of a heterogeneous, unreliable multi-
channel system with a base station and N data sources.

associated with the resource. In contrast, multiple heterogeneous

channels correspond to multiple resources and multiple dual costs.

Therefore, the techniques in [5] cannot be directly applied to our

setting with heterogeneous channels.

2 MODEL AND PROBLEM FORMULATION
We consider a wireless system where a base station (BS) is sched-

uling N data sources or sensors on multiple channels for timely

status updates in the uplink (Fig. 1). Each source corresponds to

one sender node on the left in Fig. 1. Note that each source may

experience different channel conditions due to their locations. As a

result, sources may have different preferences on the set of commu-

nication channels. To model such heterogeneity, we assume that the

sources are divided into G groups. Let Nд be the set of sources in

group д. Then, the set of all sources is N =
⋃G
д=1Nд . The sources

n ∈ Nд in the same group д experience the same condition on each

channel. We consider a discrete-time system where time is indexed

by t ∈ T . We assume that the transmission from the source to the

BS takes one time slot.

Heterogeneous andUnreliableChannels:As shown in Fig. 1,
the BS is capable of communicating in multiple channels at each

time. Depending on the frequency, modulation, and beam-forming

schemes used, the channels may have similar or different qualities.

To model such heterogeneity, we divide the channels also into

M > 1 types. We assume that each typem ∈ M = {1, . . . ,M} of

channels hasC identical instances (which we refer to in the future as

“channels”). As we explain below, all sources in a given group д sees

the same channel quality in theC channel instances of a given type

m. We adopt the standard collision channel model [14] as follows. At

each time, the BS can schedule at most one source to transmit update

packets on each channel. The channel is potentially unreliable, due
to wireless channel fading. In contrast to most existing work in

the literature, we consider heterogeneous source-channel conditions.
Specifically, we assume that each transmission from source n ∈ Nд
on a channel of typem ∈ M succeeds with probability pдm ∈ (0, 1],
independently from all other transmissions. We denote the channel
quality vector for group д as ®pд = [pд1, . . . ,pдM ]

T
. With slight

abuse of notation, we denote pnm = pд(n),m where д(n) is the
group containing n.

Packet Generation: To focus our discussion on the effect of

multiple heterogeneous channels, we adopt the generate-at-will

model as [9, 16]. Specifically, whenever a source is scheduled for
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transmission, it can generate a fresh update. In this work, we use

age-of-information (or simply age) to measure the information

freshness, which is defined as the elapsed time of the last-received

information packet since it was generated (at the source). Denote

hn (t) as the age of sourcen at time t . If the transmission is successful,

the age of this source reduces to 1. If the source is not scheduled

for transmission, or if the transmission fails, the age increases by 1.

Then, the AoI evolution of source n can be written as

hn (t + 1) =

{
1, successful update from n;

hn (t) + 1, otherwise.

(1)

Intuitively, to avoid wasting channel resources, the BS should only

schedule each source on at most one channel instance. Let un (t)
be the decision variable at time t such that un (t) = m if source n
is scheduled to transmit on channel of typem, and un (t) = 0 if the

source is not scheduled for transmission. In summary, we have the

constraints that

∑N
n=1 1{un (t) = m} ≤ C for all channel typem,

and

∑M
m=1 1{un (t) =m} ≤ 1 for all source n.

2.1 MDP-based Formulation
Now, we can formulate the average AoI minimization problem

for the above heterogeneous and unreliable multi-channel system

as an MDP. Let S(t)
∆
={h1(t),h2(t), . . . ,hN (t)} ∈ N

N
+ be the sys-

tem state at time t . Denote the action space of the entire system

asU
∆
={0, 1, . . . ,M}N . (Recall that action 0 denotes no scheduled

transmission and action m ∈ M denotes the scheduled channel

type). A policy π maps from the system state S(t) to the action in

U. The state transition probability of source n when it is passive is

P{hn (t + 1) = d + 1|hn (t) = d,un (t) = 0} = 1. (2)

The state transition probabilities when source n is scheduled on a

channel of typem are

P{hn (t + 1) = d + 1|hn (t) = d,un (t) =m} = 1 − pnm,

P{hn (t + 1) = 1|hn (t) = d,un (t) =m} = pnm . (3)

We can define the T -horizon average AoI and the long-term

average AoI of the system under policy π as

H
(T )
π =

1

TN

∑T

t=1

∑N

n=1
E[hπn (t)], and Hπ

∆
= lim sup

T→∞
H
(T )
π , (4)

respectively, whereT is the length of time horizon, and hπn (t) is the
AoI of source n at time t under policy π . The objective of the MDP

is to minimize the long-term average system AoI in (4), i.e.,

min

π ∈U
T
lim sup

T→∞

1

TN

∑T

t=1

∑N

n=1
E

[
hπn (t)

]
. (5)

In theory, the above MDP can be solved optimally as an infinite-

horizon average cost per stage problem using relative value iteration

[2]. However, this approach suffers from the curse of dimensionality

and lack of insights for the solution structure. Hence, many efforts

have been focusing on developing low-complexity solutions.

2.2 Decomposition Using Lagrange Relaxation
For lower-complexity solutions, two representative approaches in

the literature are based on the relaxed problem and index policies.

In this section, we will discuss how they are related to a Lagrange

relaxation of the MDP, and the challenges of applying these existing

approaches to our setting with multiple heterogeneous channels.

We first introduce the relaxed problem. Denoteuπnm (t)
∆
=1{un (t) =

m}, i.e., the indicator variable that source n is scheduled on channel

typem at time t under policy π . The MDP formulated in Section 2.1

can be equivalently written in the following optimization form:

minimize

π
lim sup

T→∞

1

TN

∑T

t=1

∑N

n=1
E

[
hπn (t)

]
subject to

∑N

n=1
uπnm (t) ≤ C, ∀m ∈ M, t ∈ T , (6a)∑M

m=1
uπnm (t) ≤ 1, ∀n ∈ N, t ∈ T , (6b)

uπnm (t) ∈ {0, 1}, ∀t ∈ T . (6c)

Following Whittle’s approach [21], we relax the instantaneous con-

straint (6a) to an average constraint, and obtain the relaxed problem

minimize

π
lim sup

T→∞

1

TN

∑T

t=1

∑N

n=1
E

[
hπn (t)

]
subject to lim sup

T→∞

1

T
E[

∑T

t=1

∑N

n=1
uπnm (t)] ≤ C, ∀m ∈ M,

(7a)

(6b), (6c) (7b)

Next, we use Lagrange relaxation in [3, Chapter 6]. Specifically, we

introduce a dual cost λm to each of (7a), and decouple the relaxed

problem of (7) into N sub-problems, i.e., ∀n ∈ N ,

minimize

π
lim sup

T→∞

1

T

T∑
t=1
E
[
hπn (t) +

∑
m∈M

λmuπnm (t)
]

(8a)

subject to

∑M

m=1
uπnm (t) ≤ 1, ∀t ∈ T , (8b)

uπnm (t) ∈ {0, 1}, ∀t ∈ T ,∀m ∈ M . (8c)

It is easy to see that, given channel costs
®λ = [λm,∀m ∈ M],

each sub-problem (8) is an average cost per stage problem [2] for

optimizing the long-term average AoI of source n plus the costs

of its channel use, which by itself is a decoupled MDP with state

space S = N+, action space U = {0, 1, . . . ,M}, and transition

probabilities in (2) and (3).

With this dual decomposition, the relaxed problem can be solved

by iteratively solving all independent sub-problems (8) given the

current
®λ(k) (denote the resulting decisions by u

π (k )
nm (t)) and updat-

ing the dual costs
®λ(k ) by dual gradient ascent in the k-th iteration

[11], i.e., for allm ∈ M

λ
(k+1)
m =

[
λ
(k )
m + ρ ·

(
E

[∑
n∈N

u
π (k )
nm (t)

]
−C

)]+
(9)

where ρ > 0 is the step size, and [x]+ = max{x, 0}. When
®λ(k )

converges, the corresponding solution of the relaxed problem is

known to provide us with a lower bound for the objective of the

original MDP (6) [20]. However, this solution does not always pro-

vide a feasible scheduling decision, because, in the real system,

resource constraints (6a) must be met at all time, instead of just in

the average sense as in (7a). Moreover, before the primal-dual iter-

ation converges, the average constraint may be violated severely,

resulting in poor policy performance.
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For single-channel systems (M = 1), Whittle’s index policy in the

literature overcomes these drawbacks by producing a scheduling

decision that is always feasible, and is near-optimal [3, 14, 20, 21].

However, Whittle index or indexability have not been defined for

multiple heterogeneous channels. Note that in the RMAB literature,

the indexability is defined based on the following: for each state of

a project, there exists a scalar price threshold such that, when the

price is above (or below) that threshold, the resource is not used (or

used). However, as we have shown above, the sub-problem (8) in

our model is parameterized by multiple channel costs with distinct

values. Obviously, the decision to use each channel typem depends

on not only the cost λm of this type, but also the costs of other

channel types. As a result, there is no longer a single threshold that

can divide the spaces of cost vectors into one where the resource is

used, and the opposite one where the resource is not used. Next, we

overcome this difficulty by introducing the new notions of partial
indexability and partial index.

3 PARTIAL INDEXABILITY AND
ASYMPTOTICALLY OPTIMAL POLICIES

In this section, we will propose a powerful framework to design

asymptotically optimal scheduling policies, which generalizes the

notion of indexability to heterogeneous multi-channel settings.

Specifically, we introduce a new notion of partial indexability, which
are definedwith respect to the cost of one channel, given the costs of

the others. Partial indexability and the corresponding partial index

then allow us to develop a near-optimal policy for heterogeneous

multi-channel systems, which is a key contribution of our work.

Our proposed solution framework in this section is based on

only the relaxed-problem formulation in Section 2.2. Note that the

formulation of the relaxed problem in Section 2.2 can be applied to

any MDP with the cost function given by h(·). Thus, our methodol-

ogy not only applies to the AoI minimization problem in this paper,

but also other large MDP problems with multiple heterogeneous

channels (or resources). In that sense, the applicability of our pro-

posed framework in this section is beyond the current problem.

Thus, although we still use the notions of “sources/channels” in

this section, they could be easily applied to more general notions of

“projects/resources” as in the typical Whittle-index literature [20].

3.1 Partial Indexability
We first focus on the sub-problem (8) with a given vector

®λ =
[λ1, . . . , λM ]

T
of costs for all channels. As we mentioned in Sec. 2.2,

the MDP of each sub-problem is an infinite-horizon average cost

per stage problem with countably infinite state space [2]. Since

the sub-problems of all sources n in the same group д are identical

and independent, next we can write the Bellman Equation of the

sub-problem (8) for each group д as

f д(s) + J∗ = min

u ∈{0, ...,M }

[
д
д
u (s, ®λ) +

∑
d ∈S

p
д
sd (u)f

д(d)
]
, (10)

where f д(·) is the optimal relative value function, J∗ is the optimal

average cost. Here, to keep our notations general, we have used

дu (s, ®λ) = Cuдs + λu to denote the stage cost in (8a) at state s ∈ S

under actionu ∈ U = {0}
⋃
M, andp

д
sd (u) to denote the transition

probability from state s to state d by taking action u. For the AoI

minimization problem, Cuдs = h(s) and p
д
sd (u) specializes to the

transition probabilities in (2) and (3).

Next, we define the partial indexability and partial index that

generalize Whittle’s index [21]. Given the cost vector
®λ, let

µ
д
u (s, ®λ)

∆
=д

д
u (s, ®λ) +

∑
d ∈S

p
д
sd (u)f

д(d)

denote the expected cost-to-go from state s under actionu, assuming

that the optimal policy is used in the future. We first define the

following concepts that are analogous to Whittle’s notations [21].

Definition 3.1 (Passive Set). Given the cost vector ®λ, the set of
passive states for channel-typem is

P
д
m (®λ)

∆
={s ∈ S|µ

д
m (s, ®λ) > min

u,m,u≥0
µ
д
u (s, ®λ)}. (11)

In other words, if the current state of a source n ∈ Nд is s ∈

P
д
m (®λ), the solution to the relaxed problem under

®λwill not schedule

source n on channel-typem. Let
®λ−m denote the cost vector of all

channels except for channel typem. We now fix all channel costs

®λ−m except that of type m, but vary the channel cost of type m

to λ′m . Let the new cost vector be
®λ′ = [λ′m, ®λ−m ]. We define the

partial indexability as follows.

Definition 3.2 (Partial Indexability). Given the cost vector
®λ, the sub-problem (8) is partially indexable (or indexable as abbr.)
if, for all m ∈ M, the size of the passive set |Pдm (®λ′)| increases
monotonically to the entire state space as λ′m increases from 0 to∞
(while fixing other channels’ costs ®λ−m ).

If the sub-problem (8) is partially indexable, then for each state

s , there is a largest value of λ′m such that the passive set P
д
m (®λ

′)

no longer includes the state s . We refer to this value of λ′m as the

partial index, as defined below.

Definition 3.3 (Partial Index). Given channel vector ®p and
cost vector ®λ, the partial index (or index, as abbr.) Iдm (s, ®λ−m ) of state
s ∈ S for channel typem ∈ M is defined as the supremum of cost
λ′m such that the expected cost-to-go from state s for using channel
typem is no larger than that under any other actions, i.e.,

I
д
m (s, ®λ−m )

∆
=
[
sup{λ′m

��µдm (s, ®λ′) ≤ µдk (s, ®λ′),∀k≥0}]+ . (12)

In addition, we define the index for passive action (m = 0) as

I
д
0
(s, ®λ)

∆
=
[
sup{λ′

��µд
0
(s, ®λ) + λ′ ≤ µ

д
k (s,
®λ),∀k ∈ M}

]−
, (13)

where [x]−∆=min{x, 0}.

Similar to Whittle policy, partial indexability allows us to char-

acterize the urgency of each state by its indices, based on which an

efficient solution for the original problem can be derived. However,

in contrast to standard Whittle indexability, partial indexability

is defined given all the channel costs other than channel type m.

Like Whittle indexability, verifying such partial indexability is non-

trivial, and often requires significant work. We will show how to

verify partial indexability for the AoI minimization problem in

Section 4.

Next, we are interested in designing aWhittle-like policy that can

utilize partial indices. For single-channel system, the Whittle index

policy simply picks the project with the highest index. However,

14
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such a simple decision will not work for multi-channel systems

anymore, because each source is also restricted to transmit on one

channel at a time. Intuitively, to respect the capacity constraints

(6a) and (6b) for each channel and each source, the decision should

involve some matching between sources and channels. The goal of

the next section is to establish this matching formally.

3.2 Max-Weight Matching of Partial Indices
Motivated by Whittle’s index policy, we aim to schedule a group

of users with higher partial indices, while satisfying the resource

constraints on each channel. The problem can be naturally formu-

lated as a Maximum Weighted Matching problem based on partial

indices (MWM-PI). Define the graph R
∆
=(N

⋃
M, E), where E is

the set of all source-channel-type pairs. We define the problem of

MWM-PI as follows,

maximize

ynm ∈ {0, 1}

∑
n∈N

∑M

m=0
wnmynm (14a)

subject to

∑
n∈N

ynm ≤ C, ∀m ∈ M, (14b)∑
m∈M

ynm ≤ 1, ∀n ∈ N (14c)

where ynm is the binary decision to schedule source n on channel

typem,wnm
∆
=I
д(n)
m (sn, ®λ−m ) is the edge weight given by the partial

index in (12) and (13), and д(n) is the group index for user n. We

then schedule the sources according to unm (t) = ynm .

Note that MWM-PI is based on the current set of prices
®λ. As

we present next, the outcome of the MWM-PI will also guide us in

updating the prices
®λ. This idea leads to the proposed SumWeighted

Index Matching (SWIM) policy in Algorithm 1. Specifically, Line 1

initializes the system parameters. Lines 3-5 compute the scheduling

decision for time t by solving the MWM-PI problem. Lines 6-7

correspond to the transmission phase of the update packets. Line

8 updates each channel type’s cost for the next time t + 1 as a

weighted average (by the parameter β) of the previous channel cost
and the optimal dual cost associated with (14b) at time t .

Algorithm 1: Sum Weighted Index Matching (SWIM)

1 At t = 0: Initialize parameters N ,M,C, β, and ®λ(1);

2 At time t ≥ 1:

3 Compute partial indices ®Iд(n)(t) = [I
д(n)
m (sn (t), ®λ−m (t))] for

every source n ∈ N , given current cost
®λ(t);

4 Solve MWM-PI in (14) withwnm ← I
д(n)
m (sn (t), ®λ−m (t)),

and obtains the scheduling decision ®y(t);

5 Schedule sources according to ®u(t)
∆
=[unm (t)] = ®y(t);

6 Wait for updates from scheduled sources on all channels;

7 Broadcast an ACK message to indicate all successful updates;

8 Update channel cost as λm (t+1) ← (1 − β)λm (t) + βνm (t),
where νm (t) is the optimal dual variable associated with

(14b) for channel typem in the MWM-PI problem at time t .

Remark. Clearly, Algorithm 1 is a generalization of Whittle’s index

policy. In fact, in the single-channel case, the MWM-PI reduces to

Whittle’s policy. The critical difference is that, in heterogeneous

multi-channel systems, sourcen’s index for channel typem depends

on other channels’ costs
®λ−m , whose optimal value also needs to be

found. To address this difficulty, Algorithm 1 uses adaptive updates

to approach the optimal channel costs in Line 8.

3.3 Fluid Analysis and Asymptotic Optimality
In the literature, the optimality of Whittle index policies is often

shown using a fluid limit argument, by considering the regime of

a large-scale system. Specifically, [20] shows that the difference

between the state distribution under the Whittle index policy and

the steady-state distribution under the optimal policy for the relaxed

problem (7) diminishes to zero, when N ,C → ∞ and α = C/N is

kept constant. Similarly, in this section, we will focus on such a fluid

limit. We will show that the fixed point of the MWM-PI problem is

equivalent to that of the relaxed problem (i.e., when dual gradient

descent on
®λ converges and when the steady-state distribution is

reached). Since the optimal solution for the relaxed problem at the

fixed point is a lower bound for the original MDP (6), the above-

mentioned equivalence relationship is essential for establishing the

asymptotic optimality of our proposed SWIM policy later.

We first define the fluid limit model of the relaxed problem and

its fixed point as follows. For any group д, let zдs be the fraction
of sources of group д that is in state s , with

∑
s ∈S zдs = 1. Thus,

®zд
∆
=[zдs , s ∈ S] denotes the state distribution vector of group д.

Given the current cost vector
®λ, we assume that the distribution

under the relaxed policy has reached the steady state. Let xuдs ∈

[0, 1] be the fraction of sources of state s in group д that is assigned

to channel u by the relaxed policy π
rel
. We use (®x, ®z∗, ®λ∗) to denote

a fluid fixed point of the relaxed problem at steady state (i.e., when

the dual gradient ascent on
®λ converges). Similar to the fluid analysis

in [18], we can verify that, at the fixed-point channel cost
®λ∗, (®x, ®z∗)

also solves the following fluid problem (which is a linear program

(LP))

minimize

®x, ®z

∑
д∈G

∑
s ∈S

∑M

u=0
zдsC

u
дsx

u
дs (15a)

subject to∑
д∈G

∑
s ∈S

zдsx
u
дs ≤ C, ∀u ∈ M, (15b)∑

u ∈M
xuдs ≤ 1. ∀д ∈ G,∀s ∈ S, (15c)∑

u≥0

∑
d ∈S

zдsx
u
дsp

д
sd (u) =

∑
u′≥0

∑
d ∈S

zдdx
u′
дdp

д
ds (u

′),∀s ∈ S,∀д ∈ G,

(15d)

where Cuдs and p
д
sd (u) are defined in (10) (recall that u = 0 corre-

sponds to passive). Thus, the primal and dual variables (®x, ®z∗, ®λ∗)
will satisfy the KKT conditions of (15). Similar to [18, Lemma 4.3],

it can be shown that the optimal solution of the fluid problem (15),

denoted as V ∗(®x, ®z∗, ®λ∗), is a lower bound for the original MDP.

For Algorithm 1, we can similarly define its fluid limit and fixed

point as follows. Suppose that the steady state is reached. Denote the

corresponding state distribution, channel cost vector and decision

vector as ®z′, ®λ′ and ®y, respectively. Recall that MWM-PI is based on

a set of dual costs
®λ, and the edge weight is computed by wm

дs =

I
д
m (s, ®λ−m ) form ∈ M, andw0

дs = I
д
0
(s, ®λ). At steady state, (®y, ®z′, ®λ′)

15
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must solve the following fluid problem

maximize

®y

∑
д∈G

∑
s ∈S

∑M

u=0
zдsw

u
дsy

u
дs (16a)

subject to

∑
д∈G

∑
s ∈S

zдsy
u
дs ≤ C, ∀u ∈ M, (16b)∑M

u=0
yuдs = 1, ∀д ∈ G,∀s ∈ S , (16c)

replace ®x by ®y in (15d). (16d)

Denote the Lagrange multiplier associated with (16b) as νu (define

ν0 = 0). At the fixed point,
®λ′ = ®ν must hold. Thus, we denote

such (®y, ®z′, ®λ′) as the fixed point of Algorithm 1, which should also

satisfy the KKT conditions of (16).

Ideally, our goal is to show that the fixed point of the relaxed

problem is identical to that of Algorithm 1, and thus they produce

the same near-optimal objective value. However, we need a slightly

stronger condition than partial indexability, as follow.

Definition 3.4 (Precise Division). Given state space S and
channel costs ®λ, suppose that the sub-problem (10) is partially index-
able with index Iдm (s, ®λ−m ) for s ∈ S. We say that the preference for
channel-typem is precisely divisible by its partial-index Iдm (s, ®λ−m ),
if the following holds: for all s ∈ S andm ≥ 1,

(i) If Iдm (s, ®λ−m ) = λm , then µдm (s, ®λ) ≤ µ
д
u (s, ®λ),∀u ,m,u ≥ 0.

(ii) If Iдm (s, ®λ−m ) > λm , then µдm (s, ®λ) < µ
д
u (s, ®λ),∀u ,m,u ≥ 0.

(iii) Otherwise, there exists u ,m,u ≥ 0 s.t. µдm (s, ®λ) > µ
д
u (s, ®λ).

Note that Definition 3.4 implies partial indexability in Defini-

tion 3.2. To see this, note that given
®λ−m , for any state s ∈ S,

its partial index I
д
m (s, ®λ−m ) is independent of λm . Thus, as λm in-

creases, we transition from I
д
m (s, ®λ−m ) > λm (i.e., using channel

typem per Definition 3.4-(ii)) to I
д
m (s, ®λ−m ) < λm (i.e., not using

channel typem per Definition 3.4-(iii)). In other words, as λm in-

creases, P
д
m (®λ) increases monotonically to the entire state space

S. On the other hand, Definition 3.4 is stronger than partial in-

dexability because it states that this transition occurs precisely at

I
д
m (s, ®λ−m ) = λm .

Condition 3.5. The sub-problem (10) satisfies the precise division
property in Definition 3.4 (which implies partial indexability).

The next theorem, which is one of our main contributions in

this work, establishes the connection between the fixed point of

the relaxed problem (7) and the fixed point of Algorithm 1.

Theorem 3.6. Suppose that Condition 3.5 holds. Then, any fixed-
point solutions {®x, ®z∗, ®λ∗} of the relaxed problem are equivalent to
the fixed-point solutions {®y, ®z′, ®λ′} of Algorithm 1 at the fluid limit.

Proof. To prove the equivalence in the theorem, we need to

show the statement in both direction. We first prove the “⇐=”

direction. Given (®y, ®z′, ®λ′), our goal is to show that, by letting

®x = ®y, ®z∗ = ®z′, ®λ∗ = ®λ′, the KKT conditions of (16) will imply

the KKT conditions of (15). Notice that (15) and (16), and thus their

corresponding KKT conditions have very similar forms (see details

in our technical report [22]), except for the following conditions

regarding optimizing the Lagrangian in (15) and (16), respectively.

(I) [The relaxed problem (15)]: For each (д, s) ∈ G × S, [xuдs ] cor-
responds to the optimal decisions for the sub-problem (8), given

®λ∗. This means that, if xuдs > 0 for some u, it must be true that

µ
д
u (s, ®λ

∗) ≤ µ
д
u′(s,
®λ∗),∀u ′ , u, 0≤u ′≤M, where µ

д
u (s, ®λ

∗) is the ex-

pected cost-to-go of action u in (10) under
®λ∗.

(II) [The SWIM policy (16)]: Recall that ®ν is the Lagrange multiplier

for (16b), which is equal to
®λ′ at the fixed point. For each (д, s) ∈

G × S, [yuдs ] should maximize dual objective

∑M
u=0 y

u
дs (w

u
дs − νu ),

subject to the constraint

∑M
u=0 y

u
дk = 1. Denote Jmax

∆
={u |wu

дs−νu ≥

wu′
дs − νu′,∀u

′ , u,u ≥ 0}. Then, we must have

∑
u ∈Jmax yuдs = 1,

and yu
′

дs = 0 for u ′ < Jmax
.

To show “⇐=”, the key is to show that (II) implies (I). Before we

proceed, we first state a corollary and a lemma as follows.

Corollary 3.7. Suppose that Condition 3.5 holds. For any state
d ∈ S, suppose that there exists one channel-type m such that
I
д
m (d, ®λ−m ) > λm . Then, the other channels u , m must have
I
д
u (d, ®λ−u ) < λu .

Proof. By Definition 3.4-(ii), since I
д
m (d, ®λ−m ) > λm , we must

have µ
д
u (d, ®λ) > µ

д
m (d, ®λ) for all channels u,m. Suppose in contrary

that I
д
u (d, ®λ−u ) ≥ λu for u,m. Then, we would have µ

д
m (d, ®λ) ≥

µ
д
u (d, ®λ) by Definition 3.4-(i),(ii), which is a contradiction. ■

Lemma 3.8. In Condition (II) for the SWIM policy, at least one
u ≥ 0 should satisfywu

дs ≥ νu at the fixed point.

Corollary 3.7 implies that there can be at most one channel-type

m with I
д
m (d, ®λ−m ) > λm . Lemma 3.8 is also intuitive. Suppose in

contrary that wu
дs < νu (i.e., I

д
u (s, ®λ

′
−u ) < λ′u ) for all u ≥ 0. By

(12), it implies that action-0 would have been optimal for s . In that

case, I
д
0
(s, ®λ′) = 0 = ν0 by (13) at the fixed point ®ν = ®λ′, which is a

contradiction. Thus, Lemma 3.8 must hold (see [22] for details).

Now, suppose that (®y, ®z′, ®λ′) satisfies (II). To show that (®x, ®z∗, ®λ∗) =

(®y, ®z′, ®λ′) satisfies (I), we divide into two cases (note that Lemma 3.8

implies maxu≥0{w
u
дs−νu } ≥ 0).

a) (When maxu≥0{w
u
дs − νu } > 0) From condition (II), we have∑

u ∈Jmax yuдs = 1, where Jmax
contains all actions u ≥ 0 that

attain the maximum of {wu
дs − νu }. By the definition in (13),

channel-0’s index is always non-positive. Hence, we must have

0 < Jmax
. Thus, y0дs = 0. From Corollary 3.7, there can exist only

one u ≥ 1 such thatwu
дs = I

д
u (s, ®ν−u ) > νu , in which casewu′

дs =

I
д
u′(s, ®ν−u′) < νu′,∀u

′ , u. Define u∗ as the unique index such

that u∗ = argmaxu {w
u
дs −νu }. Thus, y

u∗
дs = 1. By Definition 3.4-

(ii), we then have µ
д
u∗ (s, ®ν ) < µ

д
u′(s, ®ν ), ∀u

′ , u∗, 0 ≤ u ′ ≤ M .

According to (10), xu
∗

дs = y
u∗
дs = 1 and xu

′

дs = 0,∀u ′ , u∗,u ′ ≥ 0

correspond to the optimal solutions for (8). Hence, (I) holds.

b) (When maxu≥0{w
u
дs − νu } = 0) Again, from condition (II), we

have

∑
u ∈Jmax yuдs = 1. Thus,

∑
u ∈Jmax xuдs = 1 by our construc-

tion. The definition of Jmax
implies that for all u ∈ Jmax,u > 0,

we have wu
дs = I

д
u (s, ®ν−u ) = νu . Further, for all u

′ < Jmax
, we

have wu′
дs = I

д
u′(s, ®ν−u′) < νu′ . Thus, from Definition 3.4, every

u ∈ Jmax
is an optimal action for the sub-problem (8), and ev-

ery u ′ < Jmax
is not. The only question is whether the optimal

16
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action for (I) should use action-0 or not. Next, we divide into

two sub-cases. If 0 < Jmax
, then I

д
0
(s, ®ν ) < 0. By the definition

in (13), x0дs = 0 must hold for the sub-problem (8). Thus, the

decisions

∑
u ∈Jmax xuдs = 1 is optimal for (8). On the other hand,

if 0 ∈ Jmax
, then I

д
0
(k, ®ν ) = 0. By definition of index (13), for

any ϵ0u > 0, we must have µ
д
0
(s, ®ν ) − ϵ0u ≤ µ

д
u (s, ®ν ),∀u ≥ 1.

Letting ϵ0u → 0, we then have µ
д
0
(s, ®ν ) ≤ µ

д
u (s, ®ν ),∀u ≥ 1. Thus,

x0дs > 0 is also optimal for the sub-problem (8). Combining the

two sub-cases, the decision

∑
u ∈Jmax xuдs = 1 is always optimal

for the sub-problem (8). Thus, condition (I) follows.

Combing the above cases, condition (I) must hold for the fixed point

of the SWIM policy. Hence, we have shown the “⇐=” direction.

Due to space limit, we omit the proofs for other KKT conditions

and for the “=⇒” direction. Readers are referred to our technical

report [22] for the complete proof. □

Remark. Theorem 3.6 establishes an important connection between

the fixed point of the relaxed problem and the fixed point of Algo-

rithm 1. In contrast to the relaxed problem, the solution for MWM-

PI naturally respects the instantaneous resource constraint (6a).

Since its fixed point still achieves the optimal performance at the

fluid limit, it provides useful guidance for proving the asymptotic

optimality of our proposed SWIM policy.

Next, we evaluate the performance of Algorithm 1. We first state

the following technical condition called “global attractor” [18].

Definition 3.9 (Global attractor). An equilibrum point ®X ∗

is a global attractor for a process X (t) if, for any initial point ®X (0),
the process X (t) converges to ®X ∗.

Next, we assume that a fixed point of Algorithm 1 satisfies the

global attractor property. Notice that similar assumption has been

made in [5, 18, 20]. As mentioned in [18], in general, it may be dif-

ficult to establish analytically that a fixed point is a global attractor

for the process; thus, such property is only verified numerically. Our

simulation results in Section 5.1 indeed show that such convergence

indeed happens for our proposed policy.

Based on this condition, we then show the asymptotic optimality

of the SWIM policy. Specifically, we will consider the original MDP

(6) in the following r -scaled system: we scale by r both the number

of sources in each group, and the number of channels of each type,

i.e., N r = rN and C
r
= rC , while keeping α = C

r
/N r

a constant.

The transition probabilities for each source remain unchanged. For

such a r -scaled system, we define V r
SWIM

as the average cost per

stage in the objective of (6) under our proposed SWIM policy. (Note

thatV r
SWIM

in (6) is already averaged by the number of sources N r
.)

Theorem 3.10 (Asymptotic Optimality). Suppose that Condi-
tion 3.5 holds for the sub-problem (10). Suppose that a fixed point
(®y, ®z′, ®λ′) of the policy πSWIM in Algorithm 1 is a global attrac-
tor according to Definition 3.9. Then, πSWIM is asymptotically opti-
mal in minimizing the average cost per stage. Specifically, we have
limr→∞V r

SWIM
= V ∗, where V ∗ is the optimal objective for the fluid

relaxed problem (15).

The proof of Theorem 3.10 follows from the global attractor

property and Theorem 3.6. See detailed proof in [22].

4 AOI MINIMIZATION IN HETEROGENEOUS
MULTI-CHANNEL SYSTEMS

In this section, we return to the setting of AoI minimization problem

described in Section 2.1. Since the results in Section 3 is very general,

we only need to verify that Definition 3.2 and Definition 3.4 indeed

hold for the AoI setting. Then, the result of Theorem 3.10 and

Algorithm 1 can be directly applied. As we will show soon, the

verification of the indexability and the precise division property is

highly non-trivial for sub-problem (8). Note that for single-channel

systems,Whittle indexability has been verified for AoIminimization

under the generate-at-will model [16]. However, the approach there

is based on directly solving the value function, which appears to be

infeasible for our heterogeneous multi-channel setting. Instead, we

will develop new structural properties of the value function, based

on which we will establish both partial indexability and the precise

division property.

With this goal in mind, we assume that the dual costs
®λ =

[λ1, . . . , λM ]
T
for all channels are given. Since all sub-problems

(8) are independent, in the rest of the section, we omit the super-

script д of the variables for the sub-problem (10) whenever no

ambiguity occurs. As we mentioned in Sec. 2.2, the MDP of each

sub-problem is an average cost per stage problem with infinite time

horizon and countably infinite state space. For ease of notation, we

define λ0 = 0 and p0 = 0. The corresponding Bellman Equation (10)

for the AoI minimization problem described in Section 2.1 can be

written as, for any state (i.e., current AoI) d ∈ N+,

f (d) + J∗
∆
= min

m∈{0}∪M
{λm + (1−pm )[d+f (d+1)] + pm f (1)} . (17)

Here we slightly abuse notation, and use µm (d)
∆
=µm (d, ®λ) to denote

each term in the minimization on the RHS of (17) when the param-

eter
®λ is given above. Recall that µm (d, ®λ) is the expected cost-to-go

under channel costs
®λ if channel m is selected. Since d = 1 is a

recurrent state, we can set f (1) = 0. Note that Bellman equation

(17) cannot be solved in closed form due to multiple heterogeneous

channels. Specifically, the optimal action for the current state de-

pends on the value functions of future states, which possibly have

different optimal actions. This complex dependency is in sharp

contrast to [14, 16], which only consider a single channel.

Even though the exact solution is unavailable, we can still derive

useful structure properties from (17). Next, we define a property

called “multi-threshold-type” (MTT), and prove that the optimal

policy for the sub-problem (8) is indeed MTT.

Definition 4.1 (Multi-threshold-type). A channel selection
policy for the sub-problem (8) is MTT if the followings hold:

(1) (Threshold-based) For any channels γ ,ψ ∈ {0, 1, . . . ,M} with
pγ >pψ , there existsHγ ,ψ ≥ 0 such that µγ (d) ≤ µψ (d), for all d ≥
Hγ ,ψ , and µγ (d) > µψ (d), for all d < Hγ ,ψ .

(2) (Ordering of Channels) Suppose two states d1<d2. Denote the
optimal channels ford1 andd2 bem∗(d1) andm∗(d2), respectively.
Then, pm∗(d1)≤pm∗(d2) must hold.

(3) (Channel Dominance) For any two channel types γ and ψ with

pγ >pψ , if
λγ
pγ <

λψ
pψ

, thenψ is never the optimal channel for any
state, i.e., µγ (d) ≤ µψ (d) for all state d whenever µψ (d) ≤ µ0(d).
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Figure 2: An illustration for MTT policy. Suppose a 3-
channel system with p1 < p2 < p3 and λ1

p1 <
λ3
p3 <

λ2
p2 (note

that Channel 2 is dominated by Channel 3).

In other words, Condition 1 states that a threshold exists for

any pair of channels, such that a better-quality channel is always

preferred to the worse one whend is above the threshold. Condition

2 specifies that, as d increases, the optimal decision increasingly

prefer more reliable channels. Condition 3 means that if a channel

type ψ is less reliable and also “more expensive” than the other

channel type γ , it should never be the optimal action. In that case,

we say that channelψ is dominated by channel γ . The next lemma

shows that the optimal policy for the sub-problem (8) is MTT.

Lemma 4.2. Given the cost vector ®λ, the optimal policy π∗ satisfy-
ing (17) for the sub-problem (8) is MTT.

Lemma 4.2 is intuitive because, when the state (i.e., age) is higher,

it is more urgent for the source to use a more reliable channel. See

detailed proof in our technical report [22].

Fig. 2 illustrates a MTT policy in the state space d ∈ N+ of

the sub-problem (8) with three channels. Define Φm ⊂ N+ as the
optimal decision region ofm, i.e.,m is the optimal channel type for

all d ∈ Φm . Thanks to Definition 4.1-(1), Φm must be contiguous

for allm. We denote Hm = mind ∈Φm d as the threshold for channel

typem. Note that the optimal decision regions for some channels

(Φ2 is absent in Fig. 2) may be empty due to channel dominance.

Before we proceed to the proof of partial indexability, we first prove

the following lemma. Without loss of generality, we assume that all

channels have distinct successful probabilities, and their qualities

are arranged in an ascending order, i.e., p1 < . . . < pM .

Lemma 4.3. Given ®λ, suppose ®λ′ = [λ1, . . . , λm +∆, . . . , λM ],∆ >
0. Denote the optimal value functions in (17) under ®λ (with the optimal
policy π ) and under ®λ′ (with the optimal policy π ′) as f (·) and f ′(·),
respectively. Then, the difference between two value functions can
be upper-bounded by f ′(d) − f (d) < ∆

pm ,∀1 ≤ m ≤ M , and lower-

bounded by f ′(d) − f (d) > − ∆
pm+1 ,∀1 ≤ m < M .

To prove Lemma 4.3, we use the equivalence relationship be-

tween the average cost per stage problem and the stochastic short-

est path problem [2]. Due to space limit, we refer readers to our

technical report [22] for details.

Proposition 4.4. Given the cost vector ®λ, the sub-problem (8) of
heterogeneous multi-channel AoI minimization is partially indexable.

Proof. To prove the proposition, it suffices to show: (i) If d ∈

Pm (®λ), then d ∈ Pm (®λ
′) must hold for

®λ′; and (ii) If λm = ∞,

then Pm (®λ) = S. By Lemma 4.2, the optimal policy for sub-

problem (8) is MTT. Then, the passive sets under
®λ can be ex-

pressed as Pm (®λ) = {1, . . . ,Hm−1} ∪ {Hm+1, . . .} ifm < M , and

PM (®λ) = {1, . . . ,HM−1}. To show statement (i), it suffices to

show that Pm (®λ) ⊆ Pm (®λ
′), which is equivalent to showing that

Hm ≤ H ′m,∀m ≤ M and Hm+1 ≥ H ′m+1,∀m < M .

Figure 3: Dual costs update of π
rel

for the relaxed problem.

We first show Hm ≤ H ′m,∀m ≤ M . Suppose in contrary that

Hm > H ′m . By the definition ofHm , at stateH ′m policyπ must prefer

another action u, 0 ≤ u < m, over channel m, i.e., µu (H
′
m,
®λ) ≤

µm (H
′
m,
®λ). By (17), this implies that (noting f (1) = 0)

(pm − pu )[H
′
m + f (H ′m + 1)] ≤ λm − λu . (18)

Similarly, given
®λ′, policy π ′ must preferm over other channels at

H ′m , i.e., µm (H
′
m,
®λ′) ≤ µu (H

′
m,
®λ′). By (17), this implies that

(pm − pu )[H
′
m + f ′(H ′m + 1)] ≥ λ

′
m − λu . (19)

Recall that λ′m = λm +∆. From (18) and (19), we have f ′(H ′m + 1) −

f (H ′m+1) ≥
∆

pm−pu ≥
∆
pm .Clearly, this contradicts with Lemma 4.3

that f ′(d) − f (d) < ∆
pm . Thus, Hm ≤ H ′m,∀1 ≤ m ≤ M must hold.

Similarly, we can show Hm+1 ≥ H ′m+1,∀m < M using the lower

bound in Lemma 4.3. The proof of (ii) is also straightforward. Due

to space limit, we refer readers to [22] for the complete proof. □

Proposition 4.5. Given state spaceS and channel costs ®λ, the sub-
problem (17) satisfies the precise division property in Definition 3.4.

The proof is similar to that of Prop. 4.4, and is available in [22].

To summarize this section, we briefly comment on the complex-

ity of SWIM policy. Note that the partial index incurs a higher

computational complexity than Whittle’s index [21], as it needs

to be recomputed for every
®λ. In practice, it may be more feasible

to precompute the partial indices for a quantized subset of
®λ, and

then use linear interpolation to approximate the partial indices in

real-time. Note that such precomputed partial indices do not need

to be re-calculated even if the user population changes, which is a

benefit similar to Whittle’s index. For a fixed number of channel

types and quantization levels (for
®λ), the complexity of our solution

grows linearly in user population, compared to exponential growth

for the value iteration approach. We leave for future work how to

further reduce the complexity of the partial index computation.

5 NUMERICAL RESULTS
In this section, we present MATLAB simulation results of our pro-

posed SWIM policy in Algorithm 1. Specifically, we focus on the AoI

minimization problem in Section 4 for heterogeneous multi-channel

systems. We simulate an information update system with N=50
data sources, which are divided into G=5 groups, with 15, 5, 10, 15

and 5 sources in each group 1 to 5, respectively. Further, we assume

that there are M=5 types of channels, each of which is equipped

with C=2 identical instances. To model the heterogeneity and pref-

erences, the channel success probabilities of source-channel pairs
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(a) System scale r = 1 (b) System scale r = 3 (c) System scale r = 10

Figure 4: Dual costs update of the proposed index-based policy πSWIM for different system scales.

are different across groups. For simplicity, we assume that Group-д
sources prefer Type-д channels, where д = 1, . . . , 5. Specifically,

the channel quality vector for group-1 is ®p1 = [0.9, 0.7, 0.5, 0.3, 0.1].
Then, ®pд for group д > 1 is obtained by circularly right-shifting ®p1
by д−1 positions. (Note that the entire system is asymmetric due

to the uneven source population in each group.) To compare the

scaling performance, we simulate on r -scaled systems that multi-

plies the number of the sources and channels by r , i.e., N r = rN

and C
r
= rC . The simulation time is divided into epochs, each of

which consists of 50 discrete time-slots. For a smoother update, we

re-compute the channel costs at the end of each epoch based on

Line 8 of Algorithm 1 using the averaged νm (t) of current epoch.

5.1 Convergence of the Channel-Cost Update
First, we compare the dynamics of the cost updates of the SWIM

policy with that of the relaxed policy π
rel
, and verify that their

fixed points indeed match. Fig. 3 illustrates the cost dynamics of

all channels for the relaxed problem, with respect to the number

of epochs. At each time, all sources independently compute their

optimal actions (8) based on their states and current cost
®λ(t). At

the end of each epoch, the BS performs a dual gradient update

according to (9). We simulate for T
rel
= 1000 epochs for π

rel
to

reach the fixed-point channel costs. In Fig. 3, all channels’ costs

converge to a small neighborhood of the optimal costs
®λ∗ of the

relaxed problem after T
rel
= 1000 epochs.

Next, we verify that the channel-cost dynamics under πSWIM

approach that of the relaxed problem when the system scale is large.

Specifically, we let β = 0.2 in Algorithm 1. Denote the fixed-point

channel cost vector under SWIM policy for system scale r as ®λSWIM

r .

We simulate πSWIM forTSWIM = 300 epochs under different system

scales. Fig. 4(a)-(c) show the channel-cost dynamics for the system

at scale r = 1, r = 3 and r = 10, respectively. Clearly, we can observe

that, as the system scale r increases, ®λSWIM

r approaches very close

to the values of
®λ∗ in Fig. 3. The convergence is more obvious for

r = 10 (Fig. 4(c)), which confirms the result of Theorem 3.6, i.e., the

fixed point solution
®λ′ of πSWIM is equivalent to the optimal cost

®λ∗ of the relaxed problem in the fluid limit.

5.2 Average System AoI
Next, we evaluate the average AoI performance of our proposed

policy. We will use the solution for the relaxed problem as a perfor-

mance lower bound for comparison. In addition, we will compare

SWIM policy with the following scheduling policies that satisfy the

instantaneous constraints in (6).

Rounded Relaxed Policy (RRP). As we discussed in Section 2.2,

although the optimal solution for the relaxed problem under
®λ∗

provides a lower bound for the original AoI minimization problem,

π
rel

may violate the instantaneous hard constraints (6a). To satisfy

feasibility, RRP is deduced from π
rel

with the following modifica-

tion. (Note that we did not use the priority policy in [18], since it

only works for single-channel systems and cannot be applied here.)

1. (Over-subscription) For any channel, if the number of trans-

mitting sources exceeds (or equals to) the number of channel

instance C
r
, RRP schedules C

r
sources uniformly at random;

2. (Under-subscription) Otherwise, RRP schedules additional sources

with largest AoI to reach C
r
total sources for the channel.

Max-Age Matching (MAM) [17]. This policy was originally pro-

posed for systems with multiple ON/OFF channels in [17]. As the

name suggests, MAM attempts to serve sources with high AoI val-

ues at each time. The MAM scheduler in [17] requires knowledge of

whether a channel is ON/OFF. For a fair comparison with our policy

that does not require such knowledge, we take all channels with

non-zero success probability as being ON. Then, we form a bipartite

graph between all pairs of sources and the channel types, with the

weights given by the current AoI of the sources. The scheduling

problem is then mapped to a bipartite graph matching problem.

Note that this policy ignores the exact channel success probability,

and thus is expected to have poorer performance.

Fig. 5a shows the total system AoI dynamics under different

policies for system scale r = 7. First, we can see that the total system

AoI (about 1200) under our proposed SWIM policy is very close to

the performance lower bound obtained from the relaxed problem

(the lowest two curves). This observation verifies our result in

Theorem 3.10 on the asymptotic optimality of our proposed policy.

In contrast, the AoI of the rounded relaxed policy (RRP) is over

1400, which is about 20% worse than that of SWIM policy. This

performance degradation suggests that it may not be efficient to

use the solution from the relaxed problem even for medium-scaled

systems. Finally, the AoI under theMAMpolicy is about 2000, which

is 65% worse than SWIM policy. The result is not surprising, as the

MAM policy simply ignores the channel heterogeneity.

Next, Fig. 5b shows the average total system AoI at different sys-

tem scales. For all three policies, the average total system AoI scales

almost linearly with the system scale r . Again, we observe that our
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(a) Total system AoI evolution for scale r = 7. (b) Average total system AoI v.s. system scales. (c) Normalized AoI v.s. system scales.

Figure 5: Performance comparison among different scheduling policies.

proposed SWIM policy achieves close-to-optimal AoI performance

under all simulated system scales. Finally, Fig. 5c shows the nor-

malized average AoI, i.e., the total average system AoI divided by

the scale parameter r , under our proposed SWIM policy. Clearly,

as r increases, the normalized average AoI of our SWIM policy

approaches closer to the lower bound obtained from the relaxed

problem. This observation is again consistent with our result in

Section 3.3 on the asymptotic optimality of the SWIM policy.

Finally, we report the running time of our algorithm on a Mac-

Book Pro with 2.3 GHz Intel Core i5 CPU and 16GB RAM. For each

epoch of 50 time slots and at system scale r = 1, the running time

for partial-index computation and MWM-computation are 347.93s
and 0.32s , respectively. Thus, the average running time per time

slot for SWIM policy is 6.96s , compared to 0.47s for RRP policy and

0.07s for MAM policy.

6 CONCLUSION
This work studies the problem of minimizing AoI in heterogeneous

multi-channel systems. We formulate the problem as an infinite-

horizon constrained MDP. Existing results onWhilttle index cannot

be applied to such a system with heterogeneous channels. Instead,

we introduce a new notion of partial indexability. Then, we propose

a new scheduling policy, i.e., SWIM policy, based on partial index

and MWM. Under suitable conditions, the SWIM policy asymp-

totically optimizes the total expected AoI of the system, when the

system scale is large. For the first time in the literature, such low-

complexity and asymptotically optimal policies are developed for

weakly coupled MDP with multiple heterogeneous resources. The

simulation results demonstrate near-optimal AoI performance that

outperforms other multi-channel scheduling policies in the litera-

ture. For future work, we will study more-efficient computation of

partial index, and other settings, e.g., with stochastic arrivals.

ACKNOWLEDGEMENT
This workwas supported in part by the National Science Foundation

under awards CNS-1703014 and CNS-1717493, in part by IEDC grant

A293-9-21Fund-10245, and in part by ARL grant W911NF2020221.

REFERENCES
[1] M. A. Abd-Elmagid and H. S. Dhillon. 2019. Average Peak Age-of-Information

Minimization in UAV-Assisted IoT Networks. IEEE TVT 68, 2 (2019), 2003–2008.

[2] Dimitri P. Bertsekas. 2007. Dynamic Programming and Optimal Control. Vol. 2.
Athena Scientific Belmont, MA.

[3] John Gittins, Kevin Glazebrook, and Richard Weber. 2011. Multi-armed bandit
allocation indices. John Wiley & Sons.

[4] Y. Gu, H. Chen, Y. Zhou, Y. Li, and B. Vucetic. 2019. Timely status update in

internet of things monitoring systems: An age-energy tradeoff. IEEE IoT J. 6, 3
(2019), 5324–5335.

[5] D. J. Hodge and K. D. Glazebrook. 2015. On the asymptotic optimality of greedy

index heuristics for multi-action restless bandits. Adv. App. Prob. 47, 3 (2015),
652–667.

[6] Yu-Pin Hsu. 2018. Age of information: Whittle index for scheduling stochastic

arrivals. In Proc. IEEE Int. Symp. Inf. Theory. IEEE, 2634–2638.
[7] Yu-Pin Hsu, Eytan Modiano, and Lingjie Duan. 2019. Scheduling algorithms

for minimizing age of information in wireless broadcast networks with random

arrivals. IEEE Trans. Mobile Comput. (2019).
[8] Igor Kadota and Eytan Modiano. 2019. Minimizing the Age of Information in

Wireless Networks with Stochastic Arrivals. In ACM Mobihoc ’19. 221–230.
[9] Igor Kadota, Abhishek Sinha, Elif Uysal-Biyikoglu, Rahul Singh, and Eytan Modi-

ano. 2018. Scheduling policies for minimizing age of information in broadcast

wireless networks. IEEE/ACM Trans. Netw. 26, 6 (2018), 2637–2650.
[10] S. Kaul, R. Yates, and M. Gruteser. 2012. Real-time status: How often should one

update?. In Proc. IEEE INFOCOM 2012 - IEEE Conf. on Computer Comm. 2731–2735.
[11] A. Nedic and A. Ozdaglar. 2008. Subgradient methods in network resource

allocation: Rate analysis. In 42nd Ann. Conf. Inform. Sci. and Sys. 1189–1194.
[12] Zhenzhi Qian, Fei Wu, Jiayu Pan, Kannan Srinivasan, and Ness B. Shroff. 2020.

Minimizing Age of Information in Multi-channel Time-sensitive Information

Update Systems. In Proc. IEEE INFOCOM 2020 - IEEE Conf. on Comput. Commun.
[13] B. Sombabu and S. Moharir. 2020. Age-of-Information Based Scheduling for

Multi-Channel Systems. IEEE Trans. on Wireless Comm. 19, 7 (2020), 4439–4448.
[14] Jingzhou Sun, Zhiyuan Jiang, Bhaskar Krishnamachari, Sheng Zhou, and

Zhisheng Niu. 2019. Closed-form Whittle’s index-enabled random access for

timely status update. IEEE Trans. Commun. 68, 3 (2019), 1538–1551.
[15] Yin Sun, Elif Uysal-Biyikoglu, Roy D Yates, C Emre Koksal, and Ness B Shroff.

2017. Update or wait: How to keep your data fresh. IEEE Trans. Inf. Theory 63, 11

(2017), 7492–7508.

[16] Vishrant Tripathi and Eytan Modiano. 2019. A Whittle index approach to mini-

mizing functions of age of information. In Allerton Conf. 2019. IEEE, 1160–1167.
[17] V. Tripathi and S. Moharir. 2017. Age of Information in Multi-Source Systems. In

GLOBECOM 2017 - 2017 IEEE Global Communications Conference. 1–6.
[18] Ina Maria Verloop. 2016. Asymptotically optimal priority policies for indexable

and nonindexable restless bandits. Ann. Appl. Probab. 26, 4 (2016), 1947–1995.
[19] P. Viswanath, D. N. C. Tse, and R. Laroia. 2002. Opportunistic beamforming using

dumb antennas. IEEE Trans. Inf. Theory 48, 6 (June 2002), 1277–1294.

[20] Richard R Weber and Gideon Weiss. 1990. On an index policy for restless bandits.

J. Appl. Probab. (1990), 637–648.
[21] Peter Whittle. 1988. Restless bandits: Activity allocation in a changing world. J.

Appl. Probab. (1988), 287–298.
[22] Y. Zou, K. Kim, X. Lin, and M. Chiang. 2020. Minimizing AoI in Heterogeneous

Multi-Channel Systems: A New Partial-Index Approach. Technical Report. Purdue
University, https://engineering.purdue.edu/%7elinx/papers.html.

[23] Yihan Zou, Kwang Taik Kim, Xiaojun Lin, Mung Chiang, Zhi Ding, Risto Wich-

man, and Jyri Hämäläinen. 2019. Low-overhead Multi-antenna-enabled Uplink

Random Access for Massive Machine-type Communications with Low Mobility.

In Proc. IEEE Global Commun. Conf. (GLOBECOM). Waikoloa, HI, 1–6.

[24] Yihan Zou, Kwang Taik Kim, Xiaojun Lin, Mung Chiang, Zhi Ding, Risto Wich-

man, and Jyri Hämäläinen. 2020. Low-Overhead Joint Beam-Selection and

Random-Access Schemesfor Massive Internet-of-Things with Non-Uniform Chan-

nel and Load. In Proc. IEEE Conf. on Comput. Commun. (INFOCOM). 2126–2135.

20


	Abstract
	1 Introduction
	2 Model and Problem Formulation
	2.1 MDP-based Formulation
	2.2 Decomposition Using Lagrange Relaxation

	3 Partial Indexability and Asymptotically optimal Policies
	3.1 Partial Indexability
	3.2 Max-Weight Matching of Partial Indices
	3.3 Fluid Analysis and Asymptotic Optimality

	4 AoI Minimization in Heterogeneous Multi-channel Systems
	5 Numerical Results
	5.1 Convergence of the Channel-Cost Update
	5.2 Average System AoI

	6 Conclusion
	References

